• Hidemaro Suwa
Part of the Springer Theses book series (Springer Theses)


Frustrated quantum spin systems contain rich physical structures of nontrivial quantum states and phase transitions. The origin of frustration can be a geometric structure or a long-range interaction. The farther spin interactions than the nearest sites stem from a coupling with other degrees of freedom in many realistic materials. Among them, the spin-lattice interaction has a large contribution for the effective spin interaction, and the spin-Peierls system, as a good example, has caught the attention for a long time theoretically and experimentally. At the spin-Peierls transition point, the long-range order of singlet pairs takes place, which entirely results from the quantum nature of the spin degrees of freedom. The analysis of this system and transition will bring understanding of the role of lattice degrees of freedom and nontrivial frustrated spin systems in condensed matter physics. However, the conventional quantum Monte Carlo method cannot calculate the spin-Peierls systems efficiently. In this thesis, we will develop a general improvement of the Markov chain Monte Carlo method, a novel quantum Monte Carlo method for the nonconserved particles, and the quantum Monte Carlo level spectroscopy. Utilizing these new techniques, we will precisely calculate the phase transitions and show the phase diagram of the XXZ spin-Peierls chain, the multi chain, and the two-dimensional spin-Peierls systems for the first time.


Frustrated quantum spin system Spin-Peierls system Quantum Monte Carlo method Spin liquid 


  1. 1.
    Akiyama, S., & Yasuda, C. (2011). Quantum phase transition in antiferromagnetic Heisenberg chains coupled to phonons. Journal of the Physical Society of Japan, 80(104), 709.Google Scholar
  2. 2.
    Albuquerque, A., Schwandt, D., Hetényi, B., Capponi, S., Mambrini, M., & Läuchli, A. M. (2011). Phase diagram of a frustrated quantum antiferromagnet on the honeycomb lattice: Magnetic order versus valence-bond crystal formation. Physical Review B, 84(024), 406.Google Scholar
  3. 3.
    Anderson, P. W. (1987). The resonating valence bond state in \({\rm {La}}_{2}{\rm {CuO}}_{4}\) and superconductivity. Science, 235, 1196.ADSCrossRefGoogle Scholar
  4. 4.
    Anderson, P. W., Baskaran, G., Zou, Z., & Hsu, T. (1987). Resonating-valence-bond theory of phase transitions and superconductivity in \({\rm {La}}_{2}{\rm {CuO}}_{4}\)-based compounds. Physical Review Letters, 58, 2790.ADSCrossRefGoogle Scholar
  5. 5.
    Arai, M., Fujita, M., Motokawa, M., Akimitsu, J., & Bennington, S. M. (1996). Quantum spin excitations in the spin-Peierls system \({\rm {CuGeO}}_{3}\). Physical Review Letters, 77, 3649.ADSCrossRefGoogle Scholar
  6. 6.
    Augier, D., & Poilblanc, D. (1998). Dynamical properties of low-dimensional \({\rm {CuGeO}}_{3}\) and \({\rm {NaV}}_{2}{\rm {O}}_{5}\) spin-Peierls systems. European Physical Journal B: Condensed Matter Physics, 1, 19–28.ADSCrossRefGoogle Scholar
  7. 7.
    Augier, D., Poilblanc, D., Sørensen, E., & Affleck, I. (1998). Dynamical effects of phonons on soliton binding in spin-Peierls systems. Physical Review B, 58, 9110–9113.ADSCrossRefGoogle Scholar
  8. 8.
    Bakrim, H., & Bourbonnais, C. (2007). Quantum versus classical aspects of one dimensional electron-phonon systems revisited by the renormalization group method. Physical Review B, 76(195), 115.Google Scholar
  9. 9.
    Balents, L. (2010). Spin liquids in frustrated magnets. Nature, 464, 199–208.ADSCrossRefGoogle Scholar
  10. 10.
    Barker, A. A. (1965). Monte Carlo calculations of the radial distribution functions for a proton-electron plasma. Australian Journal of Physics, 18, 119.ADSCrossRefGoogle Scholar
  11. 11.
    Beard, B. B., & Wiese, U. J. (1996). Simulations of discrete quantum systems in continuous Euclidean time. Physical Review Letters, 77, 5130.ADSCrossRefGoogle Scholar
  12. 12.
    van Bodegom, B., Larson, B. C., & Mook, H. A. (1981). Diffuse x-ray and inelastic neutron scattering study of the spin Peierls transition in N-methyl-N-ethyl-morpholinium bistetracyanoquinodimethane \([{\rm {MEM}} {\rm {(TCNQ)}}_{2}]\). Physical Review B, 24, 1520–1523.ADSCrossRefGoogle Scholar
  13. 13.
    Braden, M., Hennion, B., Reichardt, W., Dhalenne, G., & Revcolevshi, A. (1998). Spin-phonon coupling in \({\rm {CuGeO}}_{3}\). Physical Review Letters, 80, 3634.ADSCrossRefGoogle Scholar
  14. 14.
    Braden, M., Reichardt, W., Hennion, B., Dhalenne, G., & Revcolevschi, A. (2002). Lattice dynamics of \({\rm {CuGeO}}_{3}\): Inelastic neutron scattering and model calculations. Physical Review B, 66(214), 417.Google Scholar
  15. 15.
    Bray, J., Hart, H. R., Interrante, L. V., Jacobs, I. S., Kasper, J. S., Watkins, G. D., et al. (1975). Observation of a spin-Peierls transition in a Heisenberg antiferromagnetic linear-chain system. Physical Review Letters, 35, 744.ADSCrossRefGoogle Scholar
  16. 16.
    Bruce, A. D., & Cowley, R. A. (1981). Structural Phase Transitions. London: Taylor & Francis.Google Scholar
  17. 17.
    Büchner, B., Fehske, H., Kampf, A. P., & Wellein, G. (1999). Lattice dimerization in the spinPeierls compound \({\rm {CuGeO}}_{3}\). Physica B: Condensed Matter, 259–261, 956.CrossRefGoogle Scholar
  18. 18.
    Bursill, R. J., McKenzie, R. H., & Hamer, C. J. (1999). Phase diagram of a Heisenberg spin-Peierls model with quantum phonons. Physical Review Letters, 83, 408.ADSCrossRefGoogle Scholar
  19. 19.
    Caron, L. G., & Bourbonnais, C. (1984). Two-cutoff renormalization and quantum versus classical aspects for the one-dimensional electron-phonon system. Physical Review B, 29, 4230–4241.ADSCrossRefGoogle Scholar
  20. 20.
    Caron, L. G., & Moukouri, S. (1996). Density matrix renormalization group applied to the ground state of the \(XY\) spin-Peierls system. Physical Review Letters, 76, 4050.ADSCrossRefGoogle Scholar
  21. 21.
    Citro, R., Orignac, E., & Giamarchi, T. (2005). Adiabatic-antiadiabatic crossover in a spin-Peierls chain. Physical Review B, 72(024), 434.Google Scholar
  22. 22.
    Creutz, M. (1980). Monte Carlo study of quantized SU(2) gauge theory. Physical Review D, 21, 2308.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Cross, M. C., & Fisher, D. S. (1979). A new theory of the spin-Peierls transition with special relevance to the experiments on TTFCuBDT. Physical Review B, 19, 402.ADSCrossRefGoogle Scholar
  24. 24.
    Dashen, R.F., Hassiacher, B., & Neveu, A. (1974). Nonperturbative methods and extended-hadron models in field theory. I. semiclassical functional methods. Physical Review D, 10, 4114–4129.Google Scholar
  25. 25.
    Delfino, G., & Mussardo, G. (1998). Non-integrable aspects of the multi-frequency sine-Gordon model. Nuclear Physics B, 516, 675–703.MathSciNetADSCrossRefMATHGoogle Scholar
  26. 26.
    Edwards, R., Goodman, J., & Sokal, A. (1991). Multi-grid Monte Carlo (ii). two-dimensional XY model. Nuclear Physics B, 354, 289–327.ADSCrossRefGoogle Scholar
  27. 27.
    Fabrizio, M., Gogolin, A., & Nersesyan, A. (2000). Critical properties of the double-frequency sine-Gordon model with applications. Nuclear Physics B, 580, 647–687.MathSciNetADSCrossRefMATHGoogle Scholar
  28. 28.
    Fradkin, E., & Hirsch, J. E. (1983). Phase diagram of one-dimensional electron-phonon systems. I. the Su-Schrieffer-Heeger model. Physical Review B, 27, 1680–1697.ADSCrossRefGoogle Scholar
  29. 29.
    Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721.CrossRefMATHGoogle Scholar
  30. 30.
    Giamarchi, T. (2004). Quantum physics in one dimension. New York: Oxford University Press, 50, 2743–2762.Google Scholar
  31. 31.
    Gros, C., & Werner, R. (1998). Dynamics of the Peierls-active phonon modes in \({\rm {CuGeO}}_{3}\). Physical Review B, 58(R14), 677.Google Scholar
  32. 32.
    Hase, M., Terasaki, I., & Uchinokura, K. (1993). Observation of the spin-Peierls transition in linear \({\rm {Cu}}^{2}+\) (spin-\(\frac{1}{2})\) chains in an inorganic compound \({\rm {CuGeO}}_{3}\). Physical Review Letters, 70, 3651.ADSCrossRefGoogle Scholar
  33. 33.
    Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97.CrossRefMATHGoogle Scholar
  34. 34.
    Hiroi, Z., Yoshida, H., Okamoto, Y., & Yoshida, M. (2011). Novel magnetic order in the kagome lattice of volborthite. Journal of Physics: Conference Series, 320(012), 003.Google Scholar
  35. 35.
    Huizinga, S., Kommandeur, J., Sawatzky, G. A., Thole, B. T., Kopinga, K., de Jonge, W. J. M., et al. (1979). Spin-Peierls transition in N-methyl-N-ethyl-morpholinium-ditetracyanoquinodimethanide \({[\rm {MEM-(TCNQ)}}_{2}]\). Physical Review B, 19, 4723–4732.ADSCrossRefGoogle Scholar
  36. 36.
    Itou, T., Oyamada, A., Maegawa, S., Tamura, M., & Kato, R. (2007). Spin-liquid state in an organic spin-1/2 systemon a triangular lattice, \({\rm {EtMe}}_{3}{\rm {Sb[Pd(dmit)}}_{2}]_{2}.\) Journal of Physics: Condensed Matter, 19(145), 247.Google Scholar
  37. 37.
    Jacobs, I. S., Bray, J. W., Hart, H. R., Interrante, J. L., Kasper, J. S., & Watkins, G. D. (1976). Spin-Peierls transitions in magnetic donor-acceptor compounds of thetrathiafulvalene (TTF) with bisdithiolene metal complexes. Physical Review B, 14, 3036.ADSCrossRefGoogle Scholar
  38. 38.
    Jeckelmann, E., Zhang, C., & White, S. R. (1999). Metal-insulator transition in the one-dimensional Holstein model at half filling. Physical Review B, 60, 7950–7955.ADSCrossRefGoogle Scholar
  39. 39.
    Kennedy, T., & Tasaki, H. (1992). Hidden \(Z_2 \times Z_2\) symmetry breaking in Haldane-gap antiferromagnets. Physical Review B, 45, 304–307.ADSCrossRefGoogle Scholar
  40. 40.
    Kikuchi, J., Matsuoka, T., Motoya, K., Yamauchi, T., & Ueda, Y. (2002). Absence of edge localized moments in the doped spin-Peierls system \({\rm {CuGe}}_{1-x}{\rm {Si}}_{x}{\rm {O}}_3\). Physical Review Letters, 88(037), 603.Google Scholar
  41. 41.
    Kitazawa, A., & Nomura, K. (1997). Critical properties of \(S=1\) bond-alternating XXZ chains and hidden \(Z_2 \times Z_2\) symmetry. Journal of the Physical Society of Japan, 66, 3944–3956.ADSCrossRefGoogle Scholar
  42. 42.
    Kivelson Steven, A., Rokhsar Daniel, S., & Sethna James, P. (1987). Topology of the resonating valence-bond state: Solitons and high-T, superconductivity. Physical Review B, 35, 8865–8868.ADSCrossRefGoogle Scholar
  43. 43.
    Kohmoto, M., den Nijs, M., & Kadanoff Leo, P. (1981). Hamiltonian studies of the \(d=2\) Ashkin-Teller model. Physical Review B, 24, 5229.ADSCrossRefGoogle Scholar
  44. 44.
    Kosterlitz, J. M., & Thouless, D. J. (1973). Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C, 6, 1181.CrossRefGoogle Scholar
  45. 45.
    Kuboki, K., & Fukuyama, H. (1987). Spin-Peierls transition with competing interactions. Journal of the Physical Society of Japan, 56, 3126–3134.ADSCrossRefGoogle Scholar
  46. 46.
    Kühne, R. W., & Löw, U. (1999). Thermodynamical properties of a spin-\(\frac{1}{2}\) Heisenberg chain coupled to phonons. Physical Review B, 60(12), 125.Google Scholar
  47. 47.
    Majumdar, C. K., & Ghosh, D. K. (1969). On next-nearest-neighbor interaction in linear chain. I. Journal of Mathematics and Physics, 10, 1388–1398. DOI: 10.1063/1.1664978.Google Scholar
  48. 48.
    McKenzie, R. H., Hamer, C. J., & Murray, D. W. (1996). Quantum Monte Carlo study of the one-dimensional Holstein model of spinless fermions. Physical Review B, 53, 9676–9687.ADSCrossRefGoogle Scholar
  49. 49.
    Mendels, P., Bert, F., de Vries, M. A., Olariu, A., Harrison, A., Duc, F., Trombe, J. C., Lord, J., Amato, A., & Baines, C. (2007). Quantum magnetism in the paratacamite family: Towards an ideal kagomé lattice. Physical Review Letters, 98(077), 204.Google Scholar
  50. 50.
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21, 1087.ADSCrossRefGoogle Scholar
  51. 51.
    Michel, F., & Evertz, H. G. (2007). Lattice dynamics of the Heisenberg chain coupled to finite frequency bond phonons. cond-mat p. arXiv:0705.0799v2.Google Scholar
  52. 52.
    Nakano, T., & Fukuyama, H. (1981). Dimerization and solitons in one-dimensional XY-Z antiferromagnets. Journal of the Physical Society of Japan, 50, 2489–2499.ADSCrossRefGoogle Scholar
  53. 53.
    Nomura, K. (1995). Correlation functions of the 2D sine-Gordon model. Journal of Physics A: Mathematical and General, 28, 5451–5468.MathSciNetADSCrossRefMATHGoogle Scholar
  54. 54.
    Nomura, K., & Okamoto, K. (1994). Critical properties of \(S=\frac{1}{2}\) antiferromagnetic \(XXZ\) chain with next-nearest-neighbour interactions. Journal of Physics A: Mathematical and General, 27, 5773.MathSciNetADSCrossRefMATHGoogle Scholar
  55. 55.
    Nomura, K., & Okamoto, K. (2001). BKT transition and level spectroscopy. Butsuri, 56, 836.Google Scholar
  56. 56.
    Nomura, K., & Okamoto, K. (2002). BKT transition and level spectroscopy. In Proceedings on French-Japanese Symposium Quantum Properties of Low-Dimensional Antiferromagnets; cond-mat/020172.Google Scholar
  57. 57.
    Okamoto, Y., Yoshida, H., & Hiroi, Z. (2009). Vesignieite \({\rm {BaCu}}_{3}{\rm {V}}_{2}{\rm {O}}_{8}{(\rm {OH})}_2\) as a candidate spin-1/2 kagome antiferromagnet. Journal of the Physical Society of Japan, 78(033), 701.Google Scholar
  58. 58.
    Onishi, H., & Miyashita, S. (2003). Quantum narrowing effect in a spin-Peierls system with quantum lattice fluctuation. Journal of the Physical Society of Japan, 72, 392.ADSCrossRefGoogle Scholar
  59. 59.
    Pearson, C. J., Barford, W., & Bursill, R. J. (2010). Quantized lattice dynamic effects on the spin-Peierls transition. Physical Review B, 82(144), 408.Google Scholar
  60. 60.
    Pouget, J. P. (2001). Microscopic interactions in \({\rm {CuGeO}}_{3}\) and organic spin-Peierls systems deduced from their pretransitional lattice fluctuations. European Physical Journal B: Condensed Matter Physics, 20, 321–333.Google Scholar
  61. 61.
    Pouget, J. P., Ravy, S., Schoeffel, J., Dhalenne, G., & Revcolevshi, A. (2004). Spin-Peierls lattice fluctuations and disorders in \({\rm {CuGeO}}_{3}\) and its solid solutions. European Physical Journal B: Condensed Matter Physics, 38, 581–598.ADSCrossRefGoogle Scholar
  62. 62.
    Prokof’ev, N. V., Svistunov, B. V., & Tupitsyn, I. S. (1998). Exact, complete, and universal continuous-time world-line Monte Carlo approach to the statistics of discrete quantum systems. Soviet Physics JETP, 87, 310.ADSCrossRefGoogle Scholar
  63. 63.
    Raas, C., Bühler, A., & Uhrig, G. S. (2001). Effective spin models for spin-phonon chains by flow equations. European Physical Journal B: Condensed Matter Physics, 21, 369–374.ADSCrossRefGoogle Scholar
  64. 64.
    Raas, C., Löw, U., Uhrig, G. S., & Kühne, R. W. (2002). Spin-phonon chains with bond coupling. Physical Review B, 65(144), 438.Google Scholar
  65. 65.
    Regnault, L. P., Renard, J. P., Dhalenne, G., & Revcolevschi, A. (1995). Coexistence of dimerization and antiferromagnetism in Si-doped \({\rm {CuGeO}}_{3}\). Europhysics Letters, 32, 579–584.ADSCrossRefGoogle Scholar
  66. 66.
    Sandvik, A. W. (1999). Stochastic series expansion method with operator-loop update. Physical Review B, 59(R14), 157.Google Scholar
  67. 67.
    Sandvik, A. W., & Campbell, D. K. (1999). Spin-Peierls transition in the Heisenberg chain with finite-frequency phonons. Physical Review Letters, 83, 195.ADSCrossRefGoogle Scholar
  68. 68.
    Schulz, H. J. (1986). Phase diagrams and correlation exponents for quantum spin chains of arbitrary spin quantum number. Physical Review B, 34, 6372.ADSCrossRefGoogle Scholar
  69. 69.
    Schulz, H. J., Ziman, T., & Poiblanc, D. (1994). Fluctuations in quantum antiferromagnets. In H. T. Diep (Ed.), Magnetic Systems With Competing Interactions (pp. 120–160). Singapore: World Scientific.CrossRefGoogle Scholar
  70. 70.
    Seiler, E., Stamatescu, I., Patrascioiu, A., & Linke, V. (1988). Critical behaviour, scaling and universality in some two-dimensional spin models. Nuclear Physics B, 305, 623–660.ADSCrossRefGoogle Scholar
  71. 71.
    Senthil, T., & Fisher Matthew, P. A. (2001). Fractionalization in the cuprates: Detecting the topological order. Physical Review Letters, 86, 292–295.ADSCrossRefGoogle Scholar
  72. 72.
    Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M., & Saito, G. (2003). Spin liquid state in an organic Mott insulator with a triangular lattice. Physical Review Letters, 91(107), 001.Google Scholar
  73. 73.
    Simonet, V., Grenier, B., Villain, F., Flank, A. M., Dhalenne, G., Revcolevschi, A., et al. (2006). Effect of structural distortions on the magnetism of doped spin-Peierls \({\rm {CuGeO}}_{3}\). European Physical Journal B: Condensed Matter Physics, 53, 155–167.ADSCrossRefGoogle Scholar
  74. 74.
    Su, W. P., Schrieffer, J. R., & Heeger, A. J. (1979). Solitons in polyacetylene. Physical Review Letters, 42, 1698–1701.ADSCrossRefGoogle Scholar
  75. 75.
    Sun, P., Schmeltzer, D., & Bishop, A. R. (2000). Analytic approach to the one-dimensional spin-Peierls system in the entire frequency range. Physical Review B, 62, 11308–11311.Google Scholar
  76. 76.
    Suzuki, M. (1976). Relationship between \(d\)-dimensional quantal spin systems and \((d+1)\)-dimensional Ising systems. Programming Theoretical Physics, 56, 1454.ADSCrossRefMATHGoogle Scholar
  77. 77.
    Syljuasen, O. F., & Sandvik, A. W. (2002). Quantum Monte Carlo with directed loops. Physical Review E, 66(046), 701.Google Scholar
  78. 78.
    Trebst, S., Elstner, N., & Monien, H. (2001). Renormalization of the spin-Peierls transition due to phonon dynamics. Europhysics Letters, 56(2), 268–274.ADSCrossRefGoogle Scholar
  79. 79.
    Tsvelik, A. M. (1992). Spectrum of magnetic excitations in the spin-Peierls state. Physical Review B, 45, 486–488.ADSCrossRefGoogle Scholar
  80. 80.
    Uchinokura, K. (2002). Spin-Peierls transition in \({\rm {CuGeO}}_{3}\) and impurity-induced ordered phases in low-dimensional spin-gap systems. Journal of Physics: Condensed Matter, 14, R195–R237.ADSCrossRefGoogle Scholar
  81. 81.
    Uhrig, G. S. (1998). Nonadiabatic approach to spin-Peierls transitions via flow equations. Physical Review B, 57(R14), 004.Google Scholar
  82. 82.
    Uhrig, G. S., & Schulz, H. J. (1996). Magnetic excitation spectrum of dimerized antiferromagnetic chains. Physical Review B, 54, R9624–R9627.ADSCrossRefGoogle Scholar
  83. 83.
    Visser, R. J. J., Oostra, S., Vettier, C., & Voiron, J. (1983). Determination of the spin-Peierls distortion in N-methyl-N-ethyl-morpholinium ditetracyanoquinodimethanide \({[\rm {MEM(TCNQ)}}_{2}]\): Neutron diffraction study at 6 K. Physical Review B, 28, 2074–2077.ADSCrossRefGoogle Scholar
  84. 84.
    Voit, J., & Schulz, H. J. (1988). Electron-phonon interaction and phonon dynamics in one-dimensional conductors. Physical Review B, 37, 10068–10085.Google Scholar
  85. 85.
    Weiße, A., Hager, G., Bishop, A. R., & Fehske, H. (2006). Phase diagram of the spin-Peierls chain with local coupling: Density-matrix renormalization-group calculations and unitary transformations. Physical Review B, 74(214), 426.Google Scholar
  86. 86.
    Weiße, A., Wellein, G., & Fehske, H. (1999). Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain. Physical Review B, 60, 6566.ADSCrossRefGoogle Scholar
  87. 87.
    Wellein, G., Fehske, H., & Kampf, A. P. (1998). Peierls dimerization with nonadiabatic spin-phonon coupling. Physical Review Letters, 81, 3956.ADSCrossRefGoogle Scholar
  88. 88.
    Zheng, H. (1997). Quantum lattice fluctuations in the ground state of an XY spin-Peierls chain. Physical Review B, 56, 14414–14422.Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations