Skip to main content

Spinal Synaptic Plasticity in Chronic Pain

  • Chapter
  • First Online:
  • 1672 Accesses

Abstract

Spinal synaptic plasticity induces pathological chronic pain such as neuropathic pain. However, little is known about the mechanism of spinal synaptic plasticity in chronic pain. Although there are many causes for and various forms of spinal synaptic plasticity, several mechanisms have been revealed in recent years. Spinal synaptic plasticity consists of (1) a change in excitatory synaptic transmission efficiency (e.g., LTP, windup), (2) a change of synaptic network in the dorsal horn (e.g., Aβ-fiber sprouting into lamina II), (3) neurotrophic factors, (4) activation of ion channels (e.g., P2X receptors, TRPV1, TRPA1), and (5) activation of microglia in the spinal cord. In this chapter we review these mechanisms of spinal synaptic plasticity, which induce chronic pain. As we have investigated the activation of P2X receptors, TRPV1, and TRPA1 in the dorsal horn using whole-cell patch-clamp methods, we have discussed these studies in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Salter MW (2010) Dorsal horn plasticity and neuron–microglia interactions. In: Mogil J (ed) Pain 2010 an updated review refresher course syllabus. IASP, Seattle, pp 12–23

    Google Scholar 

  2. Sandkühler J (2013) Spinal cord plasticity and pain. In: McMahon SB (ed) Wall and Melzack's textbook of pain, 6th edn. Elsevier Churchill Livingstone, London, pp 94–110

    Google Scholar 

  3. Yoshimura M, Jessell T (1990) Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurons in the rat spinal cord. J Physiol 430:315–335

    CAS  PubMed  Google Scholar 

  4. De Koninck Y, Henry JL (1991) Substance P-mediated slow excitatory postsynaptic potential elicited in dorsal horn neurons in vivo by noxious stimulation. Proc Natl Acad Sci U S A 88:11344–11348

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kosugi M, Nakatsuka T, Fujita T et al (2007) Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. J Neurosci 27:4443–4451

    Article  CAS  PubMed  Google Scholar 

  6. Nakatsuka T, Gu JG (2001) ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci 21:6522–6531

    CAS  PubMed  Google Scholar 

  7. Nakatsuka T, Gu JG (2006) P2X purinoceptors and sensory transmission. Pflugers Arch 452:598–607

    Article  CAS  PubMed  Google Scholar 

  8. Uta D, Furue H, Pickering AE et al (2010) TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord. Eur J Neurosci 31:1960–1973

    Article  PubMed  Google Scholar 

  9. Yang K, Kumamoto E, Furue H et al (1998) Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett 255:135–138

    Article  CAS  PubMed  Google Scholar 

  10. Yoshimura M, Furue H (2006) Mechanisms for the anti-nociceptive actions of the descending noradrenergic and serotonergic systems in the spinal cord. J Pharmacol Sci 101:107–117

    Article  CAS  PubMed  Google Scholar 

  11. Sonohata M, Furue H, Katafuchi T et al (2004) Actions of noradrenaline on substantia gelatinosa neurones in the rat spinal cord revealed by in vivo patch recording. J Physiol 555:515–526

    Article  CAS  PubMed  Google Scholar 

  12. Tamae A, Nakatsuka T, Koga K et al (2005) Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors. J Physiol 568:243–253

    Article  CAS  PubMed  Google Scholar 

  13. Taniguchi W, Nakatsuka T, Miyazaki N et al (2011) In vivo patch-clamp analysis of dopaminergic antinociceptive actions on substantia gelatinosa neurons in the spinal cord. Pain 152:95–105

    Article  CAS  PubMed  Google Scholar 

  14. Nakatsuka T, Park JS, Kumamoto E et al (1999) Plastic changes in sensory inputs to rat substantia gelatinosa neurons following peripheral inflammation. Pain 82(1):39–47

    Article  CAS  PubMed  Google Scholar 

  15. Okamoto M, Baba H, Goldstein PA et al (2010) Functional reorganization of sensory pathways in the rat spinal dorsal horn following peripheral nerve injury. J Physiol 532:241–250

    Article  Google Scholar 

  16. Woolf CJ, Shortland P, Coggeshall RE (1992) Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355:75–78

    Article  CAS  PubMed  Google Scholar 

  17. Matayoshi S, Jiang N, Katafuchi T et al (2005) Actions of brain-derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat. J Physiol 569:685–695

    Article  CAS  PubMed  Google Scholar 

  18. Malcangio M, Lessmann V (2003) A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol Sci 24:116–121

    Article  CAS  PubMed  Google Scholar 

  19. Nakatsuka T, Furue H, Yoshimura M et al (2002) Activation of central terminal vanilloid receptor-1 receptors and alpha beta-methylene-ATP-sensitive P2X receptors reveals a converged synaptic activity onto the deep dorsal horn neurons of the spinal cord. J Neurosci 22:1228–1237

    CAS  PubMed  Google Scholar 

  20. Nakatsuka T, Tsuzuki K, Ling JX et al (2003) Distinct roles of P2X receptors in modulating glutamate release at different primary sensory synapses in rat spinal cord. J Neurophysiol 89:3243–3252

    Article  CAS  PubMed  Google Scholar 

  21. Shiokawa H, Nakatsuka T, Furue H et al (2006) Direct excitation of deep dorsal horn neurones in the rat spinal cord by the activation of postsynaptic P2X receptors. J Physiol 573:753–763

    Article  CAS  PubMed  Google Scholar 

  22. Tominaga M (2007) Nociception and TRP channels. Handb Exp Pharmacol 489–505

    Google Scholar 

  23. Nishio N, Taniguchi W, Sugimura YK et al (2013) Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels. Neuroscience 247:201–212

    Article  CAS  PubMed  Google Scholar 

  24. Inoue K, Tsuda M (2012) Purinergic systems, neuropathic pain and the role of microglia. Exp Neurol 234:293–301

    Article  CAS  PubMed  Google Scholar 

  25. Tsuda M, Shigemoto-Mogami Y, Koizumi S et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  CAS  PubMed  Google Scholar 

  26. Takiguchi N, Yoshida M, Taniguchi W et al (2012) Distinct degree of radiculopathy at different levels of peripheral nerve injury. Mol Pain 8:31

    Article  PubMed Central  PubMed  Google Scholar 

  27. Coull JA, Beggs S, Boudreau D et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    Article  CAS  PubMed  Google Scholar 

  28. Tsuda M, Masuda T, Kitano J et al (2009) IFN-γ receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci U S A 106:8032–8037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Masuda T, Tsuda M, Yoshinaga R et al (2012) IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep 1:334–340

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest  The authors declare that they have no confl ict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Taniguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Taniguchi, W., Nakatsuka, T. (2014). Spinal Synaptic Plasticity in Chronic Pain. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_31

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics