Skip to main content

Targeted Retrograde Gene Delivery into the Injured Spinal Cord Using Recombinant Adenovirus Vector Carrying Neurotrophic Factor Gene

  • Chapter
  • First Online:
Neuroprotection and Regeneration of the Spinal Cord

Abstract

We investigated the efficacy of retrograde gene delivery via the sternomastoid muscle of recombinant adenovirus vector (AdV) carrying brain-derived neurotrophic factor (BDNF) gene for the rescue of injured rat spinal cord. AdV-BDNF gene or AdV-β-galactosidase (AdV-LacZ) gene was injected into the sternomastoid muscle immediately after traumatic C4 spinal cord injury. Localization of β-galactosidase expression produced by LacZ gene or AdV-BDNF gene transfection was examined by immunofluorescence staining and double staining of cell markers (NeuN, RIP, GFAP, OX-42, and NG2) in the injured spinal cord. TUNEL-positive cells were counted, and immunoreactivity to active caspase-3 and NG2 was examined after gene injection. Retrograde delivery of LacZ marker gene was identified in cervical spinal cord neurons and glial cells including oligodendrocytes in the white matter. AdV-BDNF transfection resulted in a significant decrease in the number of TUNEL-positive apoptotic cells by downregulating the caspase apoptotic pathway, with significant promotion of NG2 expression in injured spinal cord, compared with AdV-LacZ injection. Our results suggest that targeted retrograde BDNF gene delivery suppresses apoptosis of neurons and oligodendrocytes in the injured rat spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katoh K, Ikata T, Katoh S et al (1996) Induction and its spread of apoptosis in rat spinal cord after mechanical trauma. Neurosci Lett 216:9–12

    Article  CAS  PubMed  Google Scholar 

  2. Li GL, Brodin G, Farooque M et al (1996) Apoptosis and expression of bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55:280–289

    Article  CAS  PubMed  Google Scholar 

  3. Crowe MJ, Bresnahan JC, Shuman SL et al (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76

    Article  CAS  PubMed  Google Scholar 

  4. Nakahara S, Yone K, Sakou T et al (1999) Induction of apoptosis signal regulating kinase 1 (ASK1) after spinal cord injury in rats: possible involvement of ASK1-JNK and p38 pathways in neuronal apoptosis. J Neuropathol Exp Neurol 58:442–450

    Article  CAS  PubMed  Google Scholar 

  5. Abe Y, Yamamoto T, Sugiyama Y et al (1999) Apoptotic cells associated with Wallerian degeneration after experimental spinal cord injury: a possible mechanism of oligodendroglial death. J Neurotrauma 16:946–952

    Article  Google Scholar 

  6. Ray SK, Wilford GG, Matzelle DC et al (1999) Calpetin and methylprednisolone inhibit apoptosis in rat spinal cord injury. Ann N Y Acad Sci 860:261–269

    Article  Google Scholar 

  7. Wada S, Yone K, Ishidou Y et al (1999) Apoptosis following spinal cord injury in rats and preventive effect of N-methyl-d-aspartate receptor antagonist. J Neurosurg 91:98–104

    CAS  PubMed  Google Scholar 

  8. Bregman BS (2000) Transplants and neurotrophins modify the response of developing and mature CNS neurons to spinal cord injury. Axonal regeneration and recovery of function. In: Kalb RG, Strittmatter SM (eds) Neurobiology of spinal cord injury. Humana, Totowa, pp 169–194

    Chapter  Google Scholar 

  9. Uchida K, Baba H, Maezawa Y et al (1998) Histological investigation of spinal cord lesions in the spinal hyperostotic mouse (twy/twy): morphological changes in anterior horn cells and immunoreactivity to neurotrophic factors. J Neurol 245:781–793

    Article  CAS  PubMed  Google Scholar 

  10. Uchida K, Nakajima H, Inukai T et al (2008) Adenovirus-mediated transfer of neurotrophin-3 gene enhances survival of anterior horn neurons of twy/twy mice with chronic mechanical compression of the spinal cord. J Neurosci Res 86:1789–1800

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura M, Bregman BS (2001) Differences in neurotrophic factor gene expression profiles between neonate and adult rat spinal cord after injury. Exp Neurol 169:407–415

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi NR, Fan DP, Giehl KM et al (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axonotomy, stimulate GAP-43 and T alpha 1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17:9583–9595

    CAS  PubMed  Google Scholar 

  13. Novikova LN, Novikov LN, Kellerth JO (2000) Survival effects of BDNF and NT-3 on axonotomized rubrospinal neurons depends on the temporal pattern of neurotrophin administration. Eur J Neurosci 12:776–780

    Article  CAS  PubMed  Google Scholar 

  14. Blits B, Boer GJ, Verhaagen J (2002) Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration. Cell Transplant 11:593–613

    PubMed  Google Scholar 

  15. Ruitenberg MJ, Eggers R, Boer GJ et al (2002) Adeno-associated viral vectors as agents for gene delivery: application in disorders and trauma of the central nervous system. Methods 28:182–194

    Article  CAS  PubMed  Google Scholar 

  16. Hendriks WT, Ruitenberg MJ, Blits B et al (2004) Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res 146:451–476

    Article  CAS  PubMed  Google Scholar 

  17. Mannes AJ, Caudle RM, O’Connell BC et al (1998) Adenoviral gene transfer to spinal-cord neurons: intrathecal vs. intraparenchymal administration. Brain Res 793:1–6

    Article  CAS  PubMed  Google Scholar 

  18. Nakajima H, Uchida K, Kobayashi S et al (2005) Targeted retrograde gene delivery into the injured cervical spinal cord using recombinant adenovirus vector. Neurosci Lett 385:30–35

    Article  CAS  PubMed  Google Scholar 

  19. Nakajima H, Uchida K, Kobayashi S et al (2008) Target muscles for retrograde gene delivery to specific spinal cord segments. Neurosci Lett 435:1–6

    Article  CAS  PubMed  Google Scholar 

  20. Nakajima H, Uchida K, Yayama T et al (2010) Targeted retrograde gene delivery of brain-derived neurotrophic factor suppresses apoptosis of neurons and oligodendroglia after spinal cord injury in rats. Spine 35:497–504

    Article  PubMed  Google Scholar 

  21. Xu K, Uchida K, Nakajima H et al (2006) Targeted retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene prevents loss of mouse (twy/twy) anterior horn neurons in vivo sustaining mechanical compression. Spine 31:1867–1874

    Article  PubMed  Google Scholar 

  22. Hermens WT, Verhaagen J (1998) Viral vectors, tools for gene transfer in the nervous system. Prog Neurobiol 55:399–432

    Article  CAS  PubMed  Google Scholar 

  23. Boulis NM, Turner DE, Imperiale MJ et al (2002) Neuronal survival following remote adenovirus gene delivery. J Neurosurg Spine 96:212–219

    Article  CAS  Google Scholar 

  24. Haase G, Pettmann B, Vigne E et al (1998) Adenovirus-mediated transfer of the neurotrophin-3 gene into skeletal muscle of pmn mice: therapeutic effects and mechanisms of action. J Neurol Sci 160:S97–S105

    Article  CAS  PubMed  Google Scholar 

  25. Nakajima H, Uchida K, Kobayashi S et al (2007) Rescue of rat anterior horn neurons after spinal cord injury by retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene. J Neurotrauma 24:703–712

    Article  PubMed  Google Scholar 

  26. Keirstead HS, Levine JM, Blakemore WF (1998) Response of the oligodendrocyte progenitor cell population (defined by NG2 labeling) to demyelination of the adult spinal cord. Glia 22: 161–170

    Article  CAS  PubMed  Google Scholar 

  27. Polite A, Reynolds R (2005) NG2-expressing cells as oligodendrocyte progenitors expressing in the normal and demyelinated adult central nervous system. J Anat 207:707–716

    Article  Google Scholar 

  28. Levine JM, Reynolds R (1999) Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 160:333–347

    Article  CAS  PubMed  Google Scholar 

  29. McTiger DM, Horner PJ, Strokes BT et al (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18:5354–5365

    Google Scholar 

Download references

Acknowledgment

 This work was supported in part by Grants-in-Aid for General Scientific Research of the Ministry of Education, Science and Culture of Japan (grants numbers C15591571, B16390435, B18390411, and B19791023).

Conflict of Interest  All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nakajima, H., Uchida, K., Yayama, T., Honjoh, K., Sakamoto, T., Baba, H. (2014). Targeted Retrograde Gene Delivery into the Injured Spinal Cord Using Recombinant Adenovirus Vector Carrying Neurotrophic Factor Gene. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics