Skip to main content

The Mechanism Behind Functional Recovery After the Incomplete Spinal Cord Injury

  • Chapter
  • First Online:
Neuroprotection and Regeneration of the Spinal Cord
  • 1758 Accesses

Abstract

Because the regenerative capability of the mammalian central nervous system (CNS) is poor, limited functional recovery occurs during the chronic phase of spinal cord injury (SCI). At the subacute phase of SCI, however, gradual functional recovery is observed to some extent in both rodents and humans in the incomplete SCI. Although the mechanism behind this functional recovery is not fully elucidated, considerable developments of knowledge in basic experimental research have resulted in an improved understanding of functional recovery after injury. In this review, we discuss the progress of research for the potential mechanisms underlying for spontaneous functional recovery, including healing process by reactive astrocytes and the propriospinal relay connections in the incomplete SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10:580–583

    Article  CAS  PubMed  Google Scholar 

  2. Frisen J et al (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131:453–464

    Article  CAS  PubMed  Google Scholar 

  3. Okada S et al (2006) Conditional ablation of stat3 or socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    Article  CAS  PubMed  Google Scholar 

  4. Silver J, Miller JH (2006) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  Google Scholar 

  5. Sriram K et al (2004) Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration. J Biol Chem 279:19936–19947

    Article  CAS  PubMed  Google Scholar 

  6. Kerr BJ, Patterson PH (2004) Potent pro-inflammatory actions of leukemia inhibitory factor in the spinal cord of the adult mouse. Exp Neurol 188:391–407

    Article  CAS  PubMed  Google Scholar 

  7. Xia XG et al (2002) Induction of STAT3 signaling in activated astrocytes and sprouting septal neurons following entorhinal cortex lesion in adult rats. Mol Cell Neurosci 21:379–392

    Article  CAS  PubMed  Google Scholar 

  8. Klein MA et al (1997) Impaired neuroglial activation in interleukin-6 deficient mice. Glia 19:227–233

    Article  CAS  PubMed  Google Scholar 

  9. Mori H et al (2004) Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10:739–743

    Article  CAS  PubMed  Google Scholar 

  10. Yamashita S et al (2004) Zinc transporter LIVI controls epithelial mesenchymal transition in zebrafish gastrula organizer. Nature 429:298–302

    Article  CAS  PubMed  Google Scholar 

  11. Penkowa M et al (2001) Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes. J Neurotrauma 18:447–463

    Article  CAS  PubMed  Google Scholar 

  12. Penkowa M et al (1999) CNS wound healing is severely depressed in metallothionein I- and II-deficient mice. J Neurosci 19:2535–2545

    CAS  PubMed  Google Scholar 

  13. Penkowa M et al (2003) Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury. Exp Neurol 181:130–148

    Article  CAS  PubMed  Google Scholar 

  14. Renault-Mihara F et al (2011) Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition. EMBO Mol Med 3:682–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Forde JE, Dale TC (2007) Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci 64:1930–1944

    Article  CAS  PubMed  Google Scholar 

  16. Chico LK, Van Eldik LJ, Watterson DM (2009) Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 8:892–909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dill J et al (2008) Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci 28:8914–8928

    Article  CAS  PubMed  Google Scholar 

  18. Courtine G et al (2008) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14:69–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Harrop JS et al (2012) Evaluation of clinical experience using cell-based therapies in patients with spinal cord injury: a systematic review. J Neurosurg Spine 17:230–246

    PubMed  Google Scholar 

  20. Grossman RG et al (2012) North American clinical trials network for the treatment of spinal cord injury: goals and progress. J Neurosurg Spine 17:6–10

    PubMed  Google Scholar 

Download references

Conflict of Interest  The Author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Okada, S. (2014). The Mechanism Behind Functional Recovery After the Incomplete Spinal Cord Injury. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics