Skip to main content

Emerging Roles of Heparan Sulfate in Axon Guidance Signaling

  • Chapter
  • First Online:
Cortical Development
  • 1252 Accesses

Abstract

Accurate wiring of the neural network is a fundamental for higher brain functions. In the developing brain, growing axons are navigated towards their targets by the concerted actions of chemoattractants and chemorepellents. Recent studies have revealed that heparan sulfate, a glycosaminoglycan sugar chain attached to core proteins in proteoglycans, plays pivotal roles in regulating axon guidance signaling. Here some of the topics related to heparan sulfate in axon guidance are reviewed with emphasis on its structure and activity in relation to its synthesizing and modifying enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMP:

Bone morphogenetic protein

DCC:

Deleted in colorectal cancer

FGF:

Fibroblast growth factor

GDNF:

Glial cell line-derived neurotrophic factor

GlcA:

Glucuronic acid

GlcNAc:

N-acetylglucosamine

HB-EGF:

Heparin-binding epidermal growth factor

HGF:

Hepatocyte growth factor

HS:

Heparan sulfate

HSPG:

Heparan sulfate proteoglycans

IdoA:

Iduronic acid

Shh:

Sonic hedgehog

TGFβ:

Transforming growth factor-β

VEGF:

Vascular endothelial growth factor

References

  • Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr (2003) QSulf1 remodels the 6-O-sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162:341–351

    Article  PubMed  CAS  Google Scholar 

  • Bülow HE, Hobert O (2004) Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41:723–736

    Article  PubMed  Google Scholar 

  • Bülow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407

    Article  PubMed  Google Scholar 

  • Charron F, Tessier-Lavigne M (2005) Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132:2251–2262

    Article  PubMed  CAS  Google Scholar 

  • Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293:1663–1666

    Article  PubMed  CAS  Google Scholar 

  • Dickson BJ, Zou Y (2010) Navigating intermediate targets: the nervous system midline. Cold Spring Harb Perspect Biol 2:a002055

    Article  PubMed  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  PubMed  CAS  Google Scholar 

  • Holst CR, Bou-Reslan H, Gore BB, Wong K, Grant D, Chalasani S, Carano RA, Frantz GD, Tessier-Lavigne M, Bolon B, French DM, Ashkenazi A (2007) Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS One 2:e575

    Article  PubMed  Google Scholar 

  • Holt CE, Dickson BJ (2005) Sugar codes for axons? Neuron 46:169–172

    Article  PubMed  CAS  Google Scholar 

  • Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046

    Article  PubMed  CAS  Google Scholar 

  • Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ, Flanagan JG, Yamaguchi Y, Sretavan DW, Giger RJ, Kolodkin AL (2004) Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44:961–975

    Article  PubMed  CAS  Google Scholar 

  • Karlstrom RO, Trowe T, Klostermann S, Baier H, Brand M, Crawford AD, Grunewald B, Haffter P, Hoffmann H, Meyer SU, Muller BK, Richter S, van Eeden FJ, Nusslein-Volhard C, Bonhoeffer F (1996) Zebrafish mutations affecting retinotectal axon pathfinding. Development 123:427–438

    PubMed  CAS  Google Scholar 

  • Kolodkin AL, Tessier-Lavigne M (2011) Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb Perspect Biol 3:a001727

    Article  PubMed  Google Scholar 

  • Lamanna WC, Baldwin RJ, Padva M, Kalus I, Ten Dam G, van Kuppevelt TH, Gallagher JT, von Figura K, Dierks T, Merry CL (2006) Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochem J 400:63–73

    Article  PubMed  CAS  Google Scholar 

  • Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T (2007) The heparanome–the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol 129:290–307

    Article  PubMed  CAS  Google Scholar 

  • Langsdorf A, Do AT, Kusche-Gullberg M, Emerson CP Jr, Ai X (2007) Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Dev Biol 311:464–477

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Chien CB (2004) When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet 5:923–935

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, von der Hardt S, Rusch MA, Stringer SE, Stickney HL, Talbot WS, Geisler R, Nusslein-Volhard C, Selleck SB, Chien CB, Roehl H (2004) Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44:947–960

    Article  PubMed  CAS  Google Scholar 

  • Lin X (2004) Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131:6009–6021

    Article  PubMed  CAS  Google Scholar 

  • Lindahl U, Kusche-Gullberg M, Kjellen L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273:24979–24982

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto Y, Irie F, Inatani M, Tessier-Lavigne M, Yamaguchi Y (2007) Netrin-1/DCC signaling in commissural axon guidance requires cell-autonomous expression of heparan sulfate. J Neurosci 27:4342–4350

    Article  PubMed  CAS  Google Scholar 

  • Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277:49175–49185

    Article  PubMed  CAS  Google Scholar 

  • Nagamine S, Koike S, Keino-Masu K, Masu M (2005) Expression of a heparan sulfate remodeling enzyme, heparan sulfate 6-O-endosulfatase sulfatase FP2, in the rat nervous system. Brain Res Dev Brain Res 159:135–143

    Article  PubMed  CAS  Google Scholar 

  • Nagamine S, Tamba M, Ishimine H, Araki K, Shiomi K, Okada T, Ohto T, Kunita S, Takahashi S, Wismans RG, van Kuppevelt TH, Masu M, Keino-Masu K (2012) Organ-specific sulfation patterns of heparan sulfate generated by extracellular sulfatases Sulf1 and Sulf2 in mice. J Biol Chem 287:9579–9590

    Article  PubMed  CAS  Google Scholar 

  • Ohto T, Uchida H, Yamazaki H, Keino-Masu K, Matsui A, Masu M (2002) Identification of a novel nonlysosomal sulphatase expressed in the floor plate, choroid plexus and cartilage. Genes Cells 7:173–185

    Article  PubMed  CAS  Google Scholar 

  • Parenti G, Meroni G, Ballabio A (1997) The sulfatase gene family. Curr Opin Genet Dev 7:386–391

    Article  PubMed  CAS  Google Scholar 

  • Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725–728

    Article  PubMed  CAS  Google Scholar 

  • Pratt T, Conway CD, Tian NM, Price DJ, Mason JO (2006) Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J Neurosci 26:6911–6923

    Article  PubMed  CAS  Google Scholar 

  • Ratzka A, Kalus I, Moser M, Dierks T, Mundlos S, Vortkamp A (2008) Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development. Dev Dyn 237:339–353

    Article  PubMed  CAS  Google Scholar 

  • Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, Werb Z, Rosen SD (2006) HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7:2

    Article  PubMed  Google Scholar 

  • Van Vactor D, Wall DP, Johnson KG (2006) Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr Opin Neurobiol 16:40–51

    Article  PubMed  Google Scholar 

  • Viviano BL, Paine-Saunders S, Gasiunas N, Gallagher J, Saunders S (2004) Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J Biol Chem 279:5604–5611

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Ai X, Freeman SD, Pownall ME, Lu Q, Kessler DS, Emerson CP Jr (2004) QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis. Proc Natl Acad Sci U S A 101:4833–4838

    Article  PubMed  CAS  Google Scholar 

  • Yu TW, Bargmann CI (2001) Dynamic regulation of axon guidance. Nat Neurosci 4(Suppl):1169–1176

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Masu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Masu, M. (2013). Emerging Roles of Heparan Sulfate in Axon Guidance Signaling. In: Kageyama, R., Yamamori, T. (eds) Cortical Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54496-8_9

Download citation

Publish with us

Policies and ethics