Skip to main content

Neocortical Neurogenesis and Circuit Assembly

  • Chapter
  • First Online:
Cortical Development

Abstract

The mammalian brain is an extraordinarily complex organ. The outermost part of the brain is the cerebral cortex, which plays a key role in higher-order brain functions, such as perception, language, and decision-making. Since the invention of Golgi staining, which allowed for visualization of individual neurons, defining neural circuits underlying various brain functions has been a field of intense study for over a century. In this chapter, we will discuss the formation of neocortical circuits, emphasizing on how individual components are generated and assembled during development and how early developmental processes, including neurogenesis and neuronal migration, may guide precise circuit assembly.

The mammalian cerebral cortex is composed of the archicortex (hippocampal region), the paleocortex (olfactory cortex), and the neocortex. As the evolutionarily newest addition, the neocortex is the site of higher brain function. It contains two primary types of neurons: glutamatergic neurons (70–80 %) and GABA (γ-aminobutyric acid)-ergic neurons (20–30 %). Glutamatergic neurons release glutamate as neurotransmitter, which elicits excitation in the postsynaptic neuron, and are the principle neurons in the neocortex responsible for generating circuit output. GABAergic neurons, on the other hand, release GABA as neurotransmitter, which usually triggers inhibition in the postsynaptic neuron, and are critical for shaping circuit output.

Peng Gao and Khadeejah T. Sultan have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles M, Goldstein MH (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 33:172–187

    PubMed  CAS  Google Scholar 

  • Ackman JB, Burbridge TJ, Crair MC (2012) Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219–225

    PubMed  CAS  Google Scholar 

  • Anderson SA, Qiu M, Bulfone A, Eisenstat DD, Meneses J, Pedersen R, Rubenstein JL (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19:27–37

    PubMed  CAS  Google Scholar 

  • Anderson SA, Kaznowski CE, Horn C, Rubenstein JLR, McConnell SK (2002) Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb Cortex 12:702–709

    PubMed  Google Scholar 

  • Ang ES Jr, Haydar TF, Gluncic V, Rakic P (2003) Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23:5805–5815

    PubMed  CAS  Google Scholar 

  • Angevine JB, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    PubMed  Google Scholar 

  • Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890

    PubMed  CAS  Google Scholar 

  • Bagri A, Marín O, Plump AS, Mak J, Pleasure SJ, Rubenstein JL, Tessier-Lavigne M (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33:233–248

    PubMed  CAS  Google Scholar 

  • Beierlein M, Gibson JR, Connors BW (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3:904–910

    PubMed  CAS  Google Scholar 

  • Blasdel GG (1992) Orientation selectivity, preference, and continuity in monkey striate cortex. J Neurosci 12:3139–3161

    PubMed  CAS  Google Scholar 

  • Blatow M, Rozov A, Katona I, Hormuzdi SG, Meyer AH, Whittington MA, Caputi A, Monyer H (2003) A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38:805–817

    PubMed  CAS  Google Scholar 

  • Bock DD, Lee WC, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:177–182

    PubMed  CAS  Google Scholar 

  • Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431

    PubMed  CAS  Google Scholar 

  • Börgers C, Epstein S, Kopell NJ (2005) Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc Natl Acad Sci U S A 102:7002–7007

    PubMed  Google Scholar 

  • Braisted JE, Tuttle R, O’leary DD (1999) Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Dev Biol 208:430–440

    PubMed  CAS  Google Scholar 

  • Braisted JE, Catalano SM, Stimac R, Kennedy TE, Tessier-Lavigne M, Shatz CJ, O’Leary DD (2000) Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J Neurosci 20:5792–5801

    PubMed  CAS  Google Scholar 

  • Braisted JE, Ringstedt T, O’Leary DD (2009) Slits are chemorepellents endogenous to hypothalamus and steer thalamocortical axons into ventral telencephalon. Cereb Cortex 19(Suppl 1):i144–i151

    PubMed  Google Scholar 

  • Breunig JJ, Haydar TF, Rakic P (2011) Neural stem cells: historical perspective and future prospects. Neuron 70:614–625

    PubMed  CAS  Google Scholar 

  • Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457:1133–1136

    PubMed  CAS  Google Scholar 

  • Brown KN, Chen S, Han Z, Lu CH, Tan X, Zhang XJ, Ding L, Lopez-Cruz A, Saur D, Anderson SA, Huang K, Shi SH (2011) Clonal production and organization of inhibitory interneurons in the neocortex. Science 334:480–486

    PubMed  CAS  Google Scholar 

  • Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312:1622–1627

    PubMed  CAS  Google Scholar 

  • Butt SJB, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G (2005) The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48:591–604

    PubMed  CAS  Google Scholar 

  • Butt SJB, Sousa VH, Fuccillo MV, Hjerling-Leffler J, Miyoshi G, Kimura S, Fishell G (2008) The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 59:722–732

    PubMed  CAS  Google Scholar 

  • Cajal SR (1937) Recollections of my life. American Philosophical Society, Philadelphia [translated by E.H. Craigie and J. Cano, 1989]

    Google Scholar 

  • Cang J, Rentería RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP (2005) Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48:797–809

    PubMed  CAS  Google Scholar 

  • Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46

    PubMed  CAS  Google Scholar 

  • Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    PubMed  CAS  Google Scholar 

  • Chattopadhyaya B, Di Cristo G, Wu CZ, Knott G, Kuhlman S, Fu Y, Palmiter RD, Huang ZJ (2007) GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54:889–903

    PubMed  CAS  Google Scholar 

  • Chen B, Schaevitz LR, McConnell SK (2005) Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc Natl Acad Sci U S A 102:17184–17189

    PubMed  CAS  Google Scholar 

  • Chen B, Wang SS, Hattox AM, Rayburn H, Nelson SB, McConnell SK (2008) The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc Natl Acad Sci U S A 105:11382–11387

    PubMed  CAS  Google Scholar 

  • Chen X, Leischner U, Rochefort NL, Nelken I, Konnerth A (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475:501–505

    PubMed  CAS  Google Scholar 

  • Chu Z, Galarreta M, Hestrin S (2003) Synaptic interactions of late-spiking neocortical neurons in layer 1. J Neurosci 23:96–102

    PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723

    PubMed  Google Scholar 

  • Da Costa NM, Martin KA (2010) Whose cortical column would that be? Front Neuroanat 4:16

    PubMed  Google Scholar 

  • Daw NW, Gordon B, Fox KD, Flavin HJ, Kirsch JD, Beaver CJ, Ji Q, Reid SN, Czepita D (1999) Injection of MK-801 affects ocular dominance shifts more than visual activity. J Neurophysiol 81:204–215

    PubMed  CAS  Google Scholar 

  • Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31:477–485

    PubMed  CAS  Google Scholar 

  • Del Río JA, Martínez A, Auladell C, Soriano E (2000) Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb Cortex 10:784–801

    PubMed  Google Scholar 

  • Des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carrié A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92:51–61

    PubMed  CAS  Google Scholar 

  • Di Cristo G, Berardi N, Cancedda L, Pizzorusso T, Putignano E, Ratto GM, Maffei L (2001) Requirement of ERK activation for visual cortical plasticity. Science 292:2337–2340

    PubMed  Google Scholar 

  • Douglas RJ, Martin KA (1991) A functional microcircuit for cat visual cortex. J Physiol 440:735–769

    PubMed  CAS  Google Scholar 

  • Douglas RJ, Martin KA (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451

    PubMed  CAS  Google Scholar 

  • Douglas RJ, Martin KA (2007) Mapping the matrix: the ways of neocortex. Neuron 56:226–238

    PubMed  CAS  Google Scholar 

  • Douglas RJ, Martin KA, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput 1:480–488

    Google Scholar 

  • Dufour A, Seibt J, Passante L, Depaepe V, Ciossek T, Frisén J, Kullander K, Flanagan JG, Polleux F, Vanderhaeghen P (2003) Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39:453–465

    PubMed  CAS  Google Scholar 

  • Elias LAB, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448:901–907

    PubMed  CAS  Google Scholar 

  • Elias LAB, Turmaine M, Parnavelas JG, Kriegstein AR (2010) Connexin 43 mediates the tangential to radial migratory switch in ventrally derived cortical interneurons. J Neurosci 30:7072–7077

    PubMed  CAS  Google Scholar 

  • Fame RM, MacDonald JL, Macklis JD (2011) Development, specification, and diversity of callosal projection neurons. Trends Neurosci 34:41–50

    PubMed  CAS  Google Scholar 

  • Fertuzinhos S, Krsnik Z, Kawasawa YI, Rasin MR, Kwan KY, Chen JG, Judas M, Hayashi M, Sestan N (2009) Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia. Cereb Cortex 19:2196–2207

    PubMed  Google Scholar 

  • Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699

    PubMed  CAS  Google Scholar 

  • Fino E, Yuste R (2011) Dense inhibitory connectivity in neocortex. Neuron 69:1188–1203

    PubMed  CAS  Google Scholar 

  • Fishell G, Kriegstein AR (2003) Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 13:34–41

    PubMed  CAS  Google Scholar 

  • Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marín O (2007) Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci 27:9682–9695

    PubMed  CAS  Google Scholar 

  • Fogarty M, Grist M, Gelman D, Marín O, Pachnis V, Kessaris N (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27:10935–10946

    PubMed  CAS  Google Scholar 

  • Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci 26:1045–1056

    PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75

    PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (2001) Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292:2295–2299

    PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci U S A 99:12438–12443

    PubMed  CAS  Google Scholar 

  • Galarreta M, Erdélyi F, Szabó G, Hestrin S (2004) Electrical coupling among irregular-spiking GABAergic interneurons expressing cannabinoid receptors. J Neurosci 24:9770–9778

    PubMed  CAS  Google Scholar 

  • Garel S, Rubenstein JL (2004) Intermediate targets in formation of topographic projections: inputs from the thalamocortical system. Trends Neurosci 27:533–539

    PubMed  CAS  Google Scholar 

  • Gelman DM, Martini FJ, Nóbrega-Pereira S, Pierani A, Kessaris N, Marín O (2009) The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 29:9380–9389

    PubMed  CAS  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    PubMed  CAS  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (2005) Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J Neurophysiol 93:467–480

    PubMed  Google Scholar 

  • Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63–72

    PubMed  CAS  Google Scholar 

  • Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72(Suppl):77–98

    PubMed  Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    PubMed  Google Scholar 

  • Hansel D, Van Vreeswijk C (2012) The mechanism of orientation selectivity in primary visual cortex without a functional map. J Neurosci 32:4049–4064

    PubMed  CAS  Google Scholar 

  • Hansen DV, Lui JH, Parker PRL, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    PubMed  CAS  Google Scholar 

  • Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435

    PubMed  CAS  Google Scholar 

  • Hattox AM, Nelson SB (2007) Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. J Neurophysiol 98:3330–3340

    PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    PubMed  CAS  Google Scholar 

  • Hevner RF, Daza RA, Englund C, Kohtz J, Fink A (2004) Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 124:605–618

    PubMed  CAS  Google Scholar 

  • Heynen AJ, Yoon BJ, Liu CH, Chung HJ, Huganir RL, Bear MF (2003) Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci 6:854–862

    PubMed  CAS  Google Scholar 

  • Hill SL, Wang Y, Riachi I, Schürmann F, Markram H (2012) Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc Natl Acad Sci U S A 109:E2885–E2894

    PubMed  CAS  Google Scholar 

  • Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733–737

    PubMed  CAS  Google Scholar 

  • Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28:1041–1059

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1974a) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158:295–305

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1974b) Sequence regularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol 158:267–293

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198:1–59

    PubMed  CAS  Google Scholar 

  • Huberman AD, Speer CM, Chapman B (2006) Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1. Neuron 52:247–254

    PubMed  CAS  Google Scholar 

  • Inan M, Welagen J, Anderson SA (2012) Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb Cortex 22:820–827

    PubMed  Google Scholar 

  • Jakovcevski I, Mayer N, Zecevic N (2011) Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors. Cereb Cortex 21:1771–1782

    PubMed  Google Scholar 

  • Jiao Y, Zhang C, Yanagawa Y, Sun QQ (2006) Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci 26:8691–8701

    PubMed  CAS  Google Scholar 

  • Kaschube M, Wolf F, Geisel T, Lowel S (2002) Genetic influence on quantitative features of neocortical architecture. J Neurosci 22:7206–7217

    PubMed  CAS  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    PubMed  CAS  Google Scholar 

  • Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, Stacker SA, Cooper HM (2006) The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 26:5840–5848

    PubMed  CAS  Google Scholar 

  • Kelava I, Reillo I, Murayama AY, Kalinka AT, Stenzel D, Tomancak P, Matsuzaki F, Lebrand C, Sasaki E, Schwamborn JC, Okano H, Huttner WB (2012) Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb Cortex 22:469–481

    PubMed  Google Scholar 

  • Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD (2011) Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91

    PubMed  CAS  Google Scholar 

  • Koulakov AA, Chklovskii DB (2001) Orientation preference patterns in mammalian visual cortex: a wire length minimization approach. Neuron 29:519–527

    PubMed  CAS  Google Scholar 

  • Kowalczyk T, Pontious A, Englund C, Daza RAM, Bedogni F, Hodge R, Attardo A, Bell C, Huttner WB, Hevner RF (2009) Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb Cortex 19:2439–2450

    PubMed  Google Scholar 

  • Kriegstein A, Noctor S, Martínez-cerdeño V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890

    PubMed  CAS  Google Scholar 

  • Krook-Magnuson E, Varga C, Lee SH, Soltesz I (2012) New dimensions of interneuronal specialization unmasked by principal cell heterogeneity. Trends Neurosci 35:175–184

    PubMed  CAS  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    PubMed  CAS  Google Scholar 

  • Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30:16796–16808

    PubMed  CAS  Google Scholar 

  • Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    PubMed  CAS  Google Scholar 

  • Li L, Hutchins BI, Kalil K (2010) Wnt5a induces simultaneous cortical axon outgrowth and repulsive turning through distinct signaling mechanisms. Sci Signal 3:pt2

    PubMed  Google Scholar 

  • Li Y, Lu H, Cheng P, Ge S, Xu H, Shi SH, Dan Y (2012) Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature 486:118–121

    PubMed  CAS  Google Scholar 

  • López-Bendito G, Cautinat A, Sánchez JA, Bielle F, Flames N, Garratt AN, Talmage DA, Role LW, Charnay P, Marín O, Garel S (2006) Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125:127–142

    PubMed  Google Scholar 

  • López-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chedotal A, Tessier-Lavigne M, Marín O (2007) Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci 27:3395–3407

    PubMed  Google Scholar 

  • Low LK, Liu XB, Faulkner RL, Coble J, Cheng HJ (2008) Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. Proc Natl Acad Sci U S A 105:8136–8141

    PubMed  CAS  Google Scholar 

  • Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146:18–36

    PubMed  CAS  Google Scholar 

  • Magavi S, Friedmann D, Banks G, Stolfi A, Lois C (2012) Coincident generation of pyramidal neurons and protoplasmic astrocytes in neocortical columns. J Neurosci 32:4762–4772

    PubMed  CAS  Google Scholar 

  • Malatesta P, Hartfuss E, Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    PubMed  CAS  Google Scholar 

  • Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Götz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764

    PubMed  CAS  Google Scholar 

  • Marín O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    PubMed  Google Scholar 

  • Marin O, Anderson SA, Rubenstein JL (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076

    PubMed  CAS  Google Scholar 

  • Marín O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL (2001) Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293:872–875

    PubMed  Google Scholar 

  • Marín O, Plump AS, Flames N, Sánchez-Camacho C, Tessier-Lavigne M, Rubenstein JL (2003) Directional guidance of interneuron migration to the cerebral cortex relies on subcortical Slit1/2-independent repulsion and cortical attraction. Development 130:1889–1901

    PubMed  Google Scholar 

  • Marin-padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: a golgi study. I. The sequential development of the cortical layers. Brain Res 23:167–183

    PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat/Felix domestica: a golgi study. I. The primordial neocortical organization. Z Anat Entwicklunsgesch 134:117–145

    CAS  Google Scholar 

  • Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126

    PubMed  CAS  Google Scholar 

  • Markram H (2010) Chapter 3: Microcircuitry of the neocortex. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits. Oxford University Press, Oxford

    Google Scholar 

  • McGarry LM, Packer AM, Fino E, Nikolenko V, Sippy T, Yuste R (2010) Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes. Front neural circuits 4:12

    PubMed  Google Scholar 

  • Métin C, Godement P (1996) The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J Neurosci 16:3219–3235

    PubMed  Google Scholar 

  • Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22:7055–7064

    PubMed  CAS  Google Scholar 

  • Meyer HS, Wimmer VC, Hemberger M, Bruno RM, De Kock CPJ, Frick A, Sakmann B, Helmstaedter M (2010) Cell type-specific thalamic innervation in a column of rat vibrissal cortex. Cereb Cortex 20:2287–2303

    PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    PubMed  CAS  Google Scholar 

  • Miyoshi G, Butt SJB, Takebayashi H, Fishell G (2007) Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci 27:7786–7798

    PubMed  CAS  Google Scholar 

  • Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa VH, Butt SJB, Battiste J, Johnson JE, Machold RP, Fishell G (2010) Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 30:1582–1594

    PubMed  CAS  Google Scholar 

  • Molnár Z, Garel S, López-Bendito G, Maness P, Price DJ (2012) Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain. Eur J Neurosci 35:1573–1585

    PubMed  Google Scholar 

  • Molyneaux BJ, Arlotta P, Menezes JRL, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437

    PubMed  CAS  Google Scholar 

  • Morales B, Choi SY, Kirkwood A (2002) Dark rearing alters the development of GABAergic transmission in visual cortex. J Neurosci 22:8084–8090

    PubMed  CAS  Google Scholar 

  • Morishima M, Kawaguchi Y (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 26:4394–4405

    PubMed  CAS  Google Scholar 

  • Morishima M, Morita K, Kubota Y, Kawaguchi Y (2011) Highly differentiated projection-specific cortical subnetworks. J Neurosci 31:10380–10391

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    PubMed  Google Scholar 

  • Mountcastle VB (2003) Introduction. Computation in cortical columns. Cereb Cortex 13:2–4

    PubMed  Google Scholar 

  • Nery S, Fishell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5:1279–1287

    PubMed  CAS  Google Scholar 

  • Niquille M, Garel S, Mann F, Hornung JP, Otsmane B, Chevalley S, Parras C, Guillemot F, Gaspar P, Yanagawa Y, Lebrand C (2009) Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C. PLoS Biol 7:e1000230

    PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    PubMed  CAS  Google Scholar 

  • Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    PubMed  CAS  Google Scholar 

  • O’Leary DD, Koester SE (1993) Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 10:991–1006

    PubMed  Google Scholar 

  • Oberlaender M, De Kock CPJ, Bruno RM, Ramirez A, Meyer HS, Dercksen VJ, Helmstaedter M, Sakmann B (2012) Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb Cortex 22:2375–2391

    PubMed  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, Yamamoto H, Mikoshiba K (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899–912

    PubMed  CAS  Google Scholar 

  • Ohki K, Reid RC (2007) Specificity and randomness in the visual cortex. Curr Opin Neurobiol 17:401–407

    PubMed  CAS  Google Scholar 

  • Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603

    PubMed  CAS  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, Pant HC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 93:11173–11178

    PubMed  CAS  Google Scholar 

  • Ohtsuki G, Nishiyama M, Yoshida T, Murakami T, Histed M, Lois C, Ohki K (2012) Similarity of visual selectivity among clonally related neurons in visual cortex. Neuron 75:65–72

    PubMed  CAS  Google Scholar 

  • Otsuka T, Kawaguchi Y (2009) Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. J Neurosci 29:10533–10540

    PubMed  CAS  Google Scholar 

  • Packer AM, McConnell DJ, Fino E, Yuste R (2012) Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. Cereb cortex. doi:10.1093/cercor/bhs210

  • Petanjek Z, Berger B, Esclapez M (2009) Origins of cortical GABAergic neurons in the cynomolgus monkey. Cereb Cortex 19:249–262

    PubMed  Google Scholar 

  • Peters A, Kara DA (1987) The neuronal composition of area 17 of rat visual cortex. IV. The organization of pyramidal cells. J Comp Neurol 260:573–590

    PubMed  CAS  Google Scholar 

  • Peters A, Sethares C (1991) Organization of pyramidal neurons in area 17 of monkey visual cortex. J Comp Neurol 306:1–23

    PubMed  CAS  Google Scholar 

  • Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365:232–255

    PubMed  CAS  Google Scholar 

  • Peters A, Walsh TM (1972) A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J Comp Neurol 144:253–268

    PubMed  CAS  Google Scholar 

  • Peters A, Cifuentes JM, Sethares C (1997) The organization of pyramidal cells in area 18 of the rhesus monkey. Cereb Cortex 7:405–421

    PubMed  CAS  Google Scholar 

  • Polleux F (2005) Genetic mechanisms specifying cortical connectivity: let’s make some projections together. Neuron 46:395–400

    PubMed  CAS  Google Scholar 

  • Polleux F, Whitford KL, Dijkhuizen PA, Vitalis T, Ghosh A (2002) Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 129:3147–3160

    PubMed  CAS  Google Scholar 

  • Pouille F, Marin-Burgin A, Adesnik H, Atallah BV, Scanziani M (2009) Input normalization by global feedforward inhibition expands cortical dynamic range. Nat Neurosci 12:1577–1585

    PubMed  CAS  Google Scholar 

  • Powell TP, Mountcastle VB (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105:133–162

    PubMed  CAS  Google Scholar 

  • Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P (2003) Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 23:622–631

    PubMed  CAS  Google Scholar 

  • Rakic P (1971) Guidance of neurons migrating to the fetal monkey neocortex. Brain Res 33:471–476

    PubMed  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83

    PubMed  CAS  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176

    PubMed  CAS  Google Scholar 

  • Rittenhouse CD, Shouval HZ, Paradiso MA, Bear MF (1999) Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature 397:347–350

    PubMed  CAS  Google Scholar 

  • Roberts EB, Meredith MA, Ramoa AS (1998) Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. J Neurophysiol 80:1021–1032

    PubMed  CAS  Google Scholar 

  • Rockland KS, Ichinohe N (2004) Some thoughts on cortical minicolumns. Exp Brain Res 158:265–277

    PubMed  Google Scholar 

  • Ross ME, Walsh CA (2001) Human brain malformations and their lessons for neuronal migration. Annu Rev Neurosci 24:1041–1070

    PubMed  CAS  Google Scholar 

  • Sauer FC (1934) Mitosis in the neural tube. J Comp Neurol 62:377–405

    Google Scholar 

  • Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87:1001–1014

    PubMed  CAS  Google Scholar 

  • Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357:1695–1708

    PubMed  Google Scholar 

  • Shitamukai A, Konno D, Matsuzaki F (2011) Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci 31:3683–3695

    PubMed  CAS  Google Scholar 

  • Shu T, Li Y, Keller A, Richards LJ (2003a) The glial sling is a migratory population of developing neurons. Development 130:2929–2937

    PubMed  CAS  Google Scholar 

  • Shu T, Sundaresan V, McCarthy MM, Richards LJ (2003b) Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo. J Neurosci 23:8176–8184

    PubMed  CAS  Google Scholar 

  • Simon A, Oláh S, Molnár G, Szabadics J, Tamás G (2005) Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J Neurosci 25:6278–6285

    PubMed  CAS  Google Scholar 

  • Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68

    PubMed  Google Scholar 

  • Sousa VH, Miyoshi G, Hjerling-Leffler J, Karayannis T, Fishell G (2009) Characterization of Nkx6-2-derived neocortical interneuron lineages. Cereb Cortex 19(Suppl 1):i1–i10

    PubMed  Google Scholar 

  • Stancik EK, Navarro-Quiroga I, Sellke R, Haydar TF (2010) Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J Neurosci 30:7028–7036

    PubMed  CAS  Google Scholar 

  • Sussel L, Marin O, Kimura S, Rubenstein JL (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370

    PubMed  CAS  Google Scholar 

  • Svoboda K, Hooks BM, Shepherd GM (2010) Chapter 4: Barrel cortex. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits. Oxford University Press, Oxford

    Google Scholar 

  • Tanaka D, Nakaya Y, Yanagawa Y, Obata K, Murakami F (2003) Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins. Development 130:5803–5813

    PubMed  CAS  Google Scholar 

  • Taniguchi H, Lu J, Huang ZJ (2012) The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339:70–74

    PubMed  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    PubMed  CAS  Google Scholar 

  • Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1:19–42

    PubMed  CAS  Google Scholar 

  • Traub RD, Whittington MA, Stanford IM, Jefferys JG (1996) A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383:621–624

    PubMed  CAS  Google Scholar 

  • Valcanis H, Tan SS (2003) Layer specification of transplanted interneurons in developing mouse neocortex. J Neurosci 23:5113–5122

    PubMed  CAS  Google Scholar 

  • Venance L, Rozov A, Blatow M, Burnashev N, Feldmeyer D, Monyer H (2000) Connexin expression in electrically coupled postnatal rat brain neurons. Proc Natl Acad Sci U S A 97:10260–10265

    PubMed  CAS  Google Scholar 

  • Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413

    PubMed  CAS  Google Scholar 

  • Wang X, Tsai JW, LaMonica B, Kriegstein AR (2011) A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 14:555–561

    PubMed  CAS  Google Scholar 

  • Weimann JM, Zhang YA, Levin ME, Devine WP, Brûlet P, McConnell SK (1999) Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24:819–831

    PubMed  CAS  Google Scholar 

  • Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci 2:461–466

    PubMed  CAS  Google Scholar 

  • Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128:3759–3771

    PubMed  CAS  Google Scholar 

  • Wichterle H, Alvarez-Dolado M, Erskine L, Alvarez-Buylla A (2003) Permissive corridor and diffusible gradients direct medial ganglionic eminence cell migration to the neocortex. Proc Natl Acad Sci U S A 100:727–732

    PubMed  CAS  Google Scholar 

  • Wiesel TN (1963) Shape and arrangement of columns in cat’s striate cortex. J Physiol 165:559–568

    PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    PubMed  CAS  Google Scholar 

  • Wimmer VC, Bruno RM, De Kock CPJ, Kuner T, Sakmann B (2010) Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb Cortex 20:2265–2276

    PubMed  Google Scholar 

  • Wolf F, Geisel T (1998) Spontaneous pinwheel annihilation during visual development. Nature 395:73–78

    PubMed  CAS  Google Scholar 

  • Wonders CP, Taylor L, Welagen J, Mbata IC, Xiang JZ, Anderson SA (2008) A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev Biol 314:127–136

    PubMed  CAS  Google Scholar 

  • Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA (2004) Origins of cortical interneuron subtypes. J Neurosci 24:2612–2622

    PubMed  CAS  Google Scholar 

  • Xu X, Roby KD, Callaway EM (2006) Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol 499:144–160

    PubMed  CAS  Google Scholar 

  • Xu Q, Tam M, Anderson SA (2008) Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol 506:16–29

    PubMed  CAS  Google Scholar 

  • Xu H, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC (2011) An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 70:1115–1127

    PubMed  CAS  Google Scholar 

  • Yoshimura Y, Callaway EM (2005) Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci 8:1552–1559

    PubMed  CAS  Google Scholar 

  • Yoshimura Y, Dantzker JLM, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–873

    PubMed  CAS  Google Scholar 

  • Yu YC, Bultje RS, Wang X, Shi SH (2009) Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458:501–504

    PubMed  CAS  Google Scholar 

  • Yu YC, He S, Chen S, Fu Y, Brown KN, Yao XH, Ma J, Gao KP, Sosinsky GE, Huang K, Shi SH (2012) Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486:113–117

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We apologize to the authors whose work we could not cite owing to space limitations. Our research is supported by grants from the National Institute of Health (R01DA024681 and P01NS048120) and the McKnight Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Hai Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Gao, P., Sultan, K.T., Zhang, XJ., Shi, SH. (2013). Neocortical Neurogenesis and Circuit Assembly. In: Kageyama, R., Yamamori, T. (eds) Cortical Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54496-8_7

Download citation

Publish with us

Policies and ethics