Skip to main content

Mitochondrial Physiology and Cerebrospinal Protection

  • Chapter
  • 1529 Accesses

Abstract

Mitochondria maintain their numbers by the fusion and fission of preexisting mitochondria. Continuous mitochondrial fusion mixes the compartments, whereas fission segregates morphologically and functionally damaged mitochondria. This changing of their shape allows mitochondria to control the life and death processes of cells, such as apoptosis, the maintenance of cellular homeostasis, and ultimately the processes that occur in neurological disorders and metabolic diseases. GTPase family proteins and their regulators modulate the fusion/fission events, and a type of autophagy known as mitophagy removes damaged mitochondria. Although the molecular mechanistic effects of anesthetics on mitochondria are not yet clear, an enhanced understanding of this knowledge will be useful for the establishment of therapeutic approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McBride HM et al (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560

    Article  CAS  PubMed  Google Scholar 

  2. Hachiya N et al (1995) Reconstitution of the initial steps of mitochondrial protein import. Nature 376:705–709

    Article  CAS  PubMed  Google Scholar 

  3. Zuchner S et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451

    Article  PubMed  Google Scholar 

  4. Lawson VH et al (2005) Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology 65:197–204

    Article  CAS  PubMed  Google Scholar 

  5. Cartoni R, Martinou JC (2009) Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp Neurol 218:268–273

    Article  CAS  PubMed  Google Scholar 

  6. Chen H et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Alexander C et al (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26:211–215

    Article  CAS  PubMed  Google Scholar 

  8. Delettre C et al (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109:584–591

    Article  CAS  PubMed  Google Scholar 

  9. Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114:867–874

    CAS  PubMed  Google Scholar 

  10. Ishihara N et al (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25:2966–2977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Olichon A et al (2007) OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death Differ 14:682–692

    Article  CAS  PubMed  Google Scholar 

  12. McQuibban GA et al (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423:537–541

    Article  CAS  PubMed  Google Scholar 

  13. Cipolat S et al (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163–175

    Article  CAS  PubMed  Google Scholar 

  14. Duvezin-Caubet S et al (2007) OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell 18:3582–3590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Griparic L et al (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Song Z et al (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ehses S et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. McBride H, Soubannier V (2010) Mitochondrial function: OMA1 and OPA1, the grandmasters of mitochondrial health. Curr Biol 20:R274–R276

    Article  CAS  PubMed  Google Scholar 

  19. Olichon A et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746

    Article  CAS  PubMed  Google Scholar 

  20. Frezza C et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  CAS  PubMed  Google Scholar 

  21. Frank S et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  22. Cassidy-Stone A et al (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wasiak S et al (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177:439–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chen H, Chan DC (2010) Physiological functions of mitochondrial fusion. Ann N Y Acad Sci 1201:21–25

    Article  CAS  PubMed  Google Scholar 

  25. Gomes LC, Scorrano L (2008) High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta 1777:860–866

    Article  CAS  PubMed  Google Scholar 

  26. Twig G et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Narendra D et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Matsuda N et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Cui M et al (2010) Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J Biol Chem 285:11740–11752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Piccoli C et al (2008) Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem Res 33:2565–2574

    Article  CAS  PubMed  Google Scholar 

  31. Gandhi S et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33:627–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tanaka A et al (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251:5069–5077

    CAS  PubMed  Google Scholar 

  34. Crompton M, Costi A (1988) Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem 178:489–501

    Article  CAS  PubMed  Google Scholar 

  35. Broekemeier KM, Carpenter Deyo L, Reed DJ, Pfeiffer DR (1992) Cyclosporin A protects hepatocytes subjected to high Ca2+ and oxidative stress. FEBS Lett 304:192–194

    Article  CAS  PubMed  Google Scholar 

  36. Imberti R, Nieminen AL, Herman B, Lemasters JJ (1992) Synergism of cyclosporin A and phospholipase inhibitors in protection against lethal injury to rat hepatocytes from oxidant chemicals. Res Commun Chem Pathol Pharmacol 78:27–38

    CAS  PubMed  Google Scholar 

  37. Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL (1993) Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268:13791–13798

    CAS  PubMed  Google Scholar 

  38. Zoeteweij JP, van de Water B, de Bont HJ, Mulder GJ, Nagelkerke JF (1993) Calcium-induced cytotoxicity in hepatocytes after exposure to extracellular ATP is dependent on inorganic phosphate. Effects on mitochondrial calcium. J Biol Chem 268:3384–3388

    CAS  PubMed  Google Scholar 

  39. Duchen MR, McGuinness O, Brown LA, Crompton M (1993) On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 27:1790–1794

    Article  CAS  PubMed  Google Scholar 

  40. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:93–98

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Davidson AM, Halestrap AP (1990) Partial inhibition by cyclosporin A of the swelling of liver mitochondria in vivo and in vitro induced by sub-micromolar [Ca2+], but not by butyrate. Evidence for two distinct swelling mechanisms. Biochem J 268:147–152

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Lee J, Kim SS (2010) An overview of cyclophilins in human cancers. J Int Med Res 38:1561–1574

    Article  CAS  PubMed  Google Scholar 

  43. Morota S, Hansson MJ, Ishii N, Kudo Y, Elmér E, Uchino H (2007) Spinal cord mitochondria display lower calcium retention capacity compared with brain mitochondria without inherent differences in sensitivity to cyclophilin D inhibition. J Neurochem 103:2066–2076

    Article  CAS  PubMed  Google Scholar 

  44. Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265:7248–7256

    CAS  PubMed  Google Scholar 

  45. John LM et al (1998) Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol 142:963–973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Higo T et al (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98

    Article  CAS  PubMed  Google Scholar 

  47. Simmen T et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  Google Scholar 

  49. Merkwirth C, Langer T (2008) Mitofusin 2 builds a bridge between ER and mitochondria. Cell 135:1165–1167

    Article  CAS  PubMed  Google Scholar 

  50. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Szabó I, Zoratti M (1991) The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J Biol Chem 266:3376–3379

    PubMed  Google Scholar 

  52. Bernardi P (1992) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem 267:8834–8839

    CAS  PubMed  Google Scholar 

  53. Alavian KN et al (2014) An uncoupling channel within the c-subunit ring of the F0F1 ATP synthase is the mitochondrial permeability transition pore. PNAS 111:10580–10585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Michenfelder JD, Theye RA (1975) In vivo toxic effects of halothane on canine cerebral metabolic pathways. Am J Physiol 229:1050–1055

    CAS  PubMed  Google Scholar 

  55. Eckenhoff RG, Shuman H (1991) Localization of volatile anesthetic molecules at the subcellular and molecular level. Ann N Y Acad Sci 625:755–756

    Article  CAS  PubMed  Google Scholar 

  56. Young Y et al (1997) Propofol neuroprotection in a rat model of ischaemia reperfusion injury. Eur J Anaesthesiol 14:320–326

    Article  CAS  PubMed  Google Scholar 

  57. Navapurkar VU et al (1998) Propofol preserves the viability of isolated rat hepatocyte suspensions under an oxidant stress. Anesth Analg 87:1152–1157

    CAS  PubMed  Google Scholar 

  58. Kowaltowski AJ et al (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    Article  CAS  PubMed  Google Scholar 

  59. Kokita N et al (1998) Propofol improves functional and metabolic recovery in ischemic reperfused isolated rat hearts. Anesth Analg 86:252–258

    CAS  PubMed  Google Scholar 

  60. Ebel D et al (1999) Effect of propofol on reperfusion injury after regional ischaemia in the isolated rat heart. Br J Anaesth 83:903–908

    Article  CAS  PubMed  Google Scholar 

  61. Yue ZY et al (2015) Propofol prevents neuronal mtDNA deletion and cerebral damage due to ischemia/reperfusion injury in rats. Brain Res 12:108–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Hachiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Suzuki, M., Kato, H., Hachiya, N. (2015). Mitochondrial Physiology and Cerebrospinal Protection. In: Uchino, H., Ushijima, K., Ikeda, Y. (eds) Neuroanesthesia and Cerebrospinal Protection. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54490-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54490-6_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54489-0

  • Online ISBN: 978-4-431-54490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics