Skip to main content

Molecular Mechanisms of Brain Ischemia and Its Protection

  • Chapter

Abstract

Ischemia is defined as a reduction in blood flow to a level that is sufficient to alter normal cellular function. Brain tissue is highly sensitive to ischemia, such that even brief ischemic periods in neurons can initiate a complex sequence of events that may ultimately culminate in cell death. Stroke and cardiac arrest induce the cessation of cerebral blood flow, which can result in brain damage. The primary intervention to salvage the brain under such a pathological condition is to restore the cerebral blood flow to the ischemic region. However, paradoxically, restoration of blood flow can cause additional damage and exacerbate the neurocognitive deficits in patients who suffered a brain ischemic event, which is a phenomenon referred to as “reperfusion injury.” Transient brain ischemia following a stroke, cardiac arrest, hypoxia, head trauma, cerebral tumor, cerebrovascular disorder, and intracranial infection results from the complex interplay of multiple pathways including excitotoxicity, acidotoxicity, ionic imbalance, peri-infarct depolarization, oxidative and nitrative stress, inflammation, and apoptosis. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. Mitochondrial dysfunction based on the mitochondrial permeability transition (MPT) after reperfusion, particularly involving the calcineurin/immunophilin signal transduction pathway, appears to play a pivotal role in the induction of neuronal cell death. Here, we discuss the underlying pathophysiology of brain damage, which is a devastating pathological condition, and highlight the central signal transduction pathway involved in brain damage, which reveals potential targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Uchino H, Elmér E, Uchino K, Lindvall O, Siesjö BK (1995) Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. Acta Physiol Scand 155(4):469–471

    Article  CAS  PubMed  Google Scholar 

  2. Li PA, Uchino H, Elmer E, Siesjö BK (1997) Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia. Brain Res 753(1):133–140

    Article  CAS  PubMed  Google Scholar 

  3. Siesjö BK, Elmer E, Janelidze S, Keep M, Kristian T, Ouyang YB et al (1999) Role and mechanisms of secondary mitochondrial failure. Acta Neurochir Suppl 73:7–13

    PubMed  Google Scholar 

  4. Uchino H, Elmér E, Uchino K, Li PA, He QP, Smith ML et al (1998) Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res 812(1–2):216–226

    Article  CAS  PubMed  Google Scholar 

  5. Uchino H, Minamikawa-Tachino R, Kristian T, Perkins G, Narazaki M, Siesjö BK et al (2002) Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis 10(3):219–233

    Article  CAS  PubMed  Google Scholar 

  6. Uchino H, Morota S, Takahashi T, Ikeda Y, Kudo Y, Ishii N et al (2006) A novel neuroprotective compound FR901459 with dual inhibition of calcineurin and cyclophilins. Acta Neurochir Suppl 96:157–162

    Article  CAS  PubMed  Google Scholar 

  7. Popp E, Bottiger BW (2006) Cerebral resuscitation: state of the art, experimental approaches and clinical perspectives. Neurol Clin 24(1):73–87 vi

    Article  PubMed  Google Scholar 

  8. Siesjö BK, Siesjö P (1996) Mechanisms of secondary brain injury. Eur J Anaesthesiol 13(3):247–268

    Article  PubMed  Google Scholar 

  9. Terasaki Y, Liu Y, Hayakawa K et al (2014) Mechanisms of neurovascular dysfunction in acute ischemic brain. Curr Med Chem 21(18):2035–2042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Povlishock JT, Katz DI (2005) Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 20(1):76–94

    Article  PubMed  Google Scholar 

  11. Janardhan V, Biondi A, Riina HA, Sanelli PC, Stieg PE, Gobin YP (2006) Vasospasm in aneurysmal subarachnoid hemorrhage: diagnosis, prevention, and management. Neuroimaging Clin N Am 16(3):483–496, viii-ix

    Article  PubMed  Google Scholar 

  12. Wan H, AlHarbi BM, Macdonald RL (2014) Mechanisms, treatment and prevention of cellular injury and death from delayed events after aneurysmal subarachnoid hemorrhage. Expert Opin Pharmacother 15(2):231–243

    Article  CAS  PubMed  Google Scholar 

  13. Kaul M, Lipton SA (2006) Mechanisms of neuroimmunity and neurodegeneration associated with HIV-1 infection and AIDS. J Neuroimmune Pharmacol 1(2):138–151

    Article  PubMed  Google Scholar 

  14. Manuelidis L (1994) Dementias, neurodegeneration, and viral mechanisms of disease from the perspective of human transmissible encephalopathies. Ann N Y Acad Sci 724:259–281

    Article  CAS  PubMed  Google Scholar 

  15. Mori I, Kimura Y (2001) Neuropathogenesis of influenza virus infection in mice. Microbes Infect 3(6):475–479

    Article  CAS  PubMed  Google Scholar 

  16. Chen JW, Naylor DE, Wasterlain CG (2007) Advances in the pathophysiology of status epilepticus. Acta Neurol Scand 186:7–15

    Article  CAS  Google Scholar 

  17. Henshall DC, Simon RP (2005) Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 25(12):1557–1572

    Article  CAS  PubMed  Google Scholar 

  18. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Friberg H, Wieloch T (2002) Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84(2–3):241–250

    Article  CAS  PubMed  Google Scholar 

  20. Kroemer G (2003) The mitochondrial permeability transition pore complex as a pharmacological target. An introduction. Curr Med Chem 10(16):1469–1472

    Article  CAS  PubMed  Google Scholar 

  21. Wieloch T, Mattiasson G, Hansson M, Elmér E (2007) Mitochondrial permeability transition in the CNS – composition, regulation, and pathophysiological relevance. In: Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology brain energetics: integration of molecular and cellular processes, 3rd edn. Springer, Berlin/Heidelberg, pp 667–702

    Chapter  Google Scholar 

  22. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S–1015S

    CAS  PubMed  Google Scholar 

  23. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23(9):1261–1276

    Article  CAS  PubMed  Google Scholar 

  24. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    Article  CAS  PubMed  Google Scholar 

  25. Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromol Med 3(2):65–94

    Article  CAS  Google Scholar 

  26. Halestrap AP (1999) The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp 66:181–203

    CAS  PubMed  Google Scholar 

  27. Honda HM, Korge P, Weiss JN (2005) Mitochondria and ischemia/reperfusion injury. Ann NY Acad Sci 1047:248–258

    Article  CAS  PubMed  Google Scholar 

  28. Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304(3):463–470

    Article  CAS  PubMed  Google Scholar 

  29. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61(3):372–385

    Article  CAS  PubMed  Google Scholar 

  30. Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79(1–2):231–239

    Article  CAS  PubMed  Google Scholar 

  31. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J et al (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102(34):12005–12010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schneider MD (2005) Cyclophilin D: knocking on death’s door. Sci STKE 2005(287):pe26

    PubMed  Google Scholar 

  33. Hansson MJ, Mansson R, Mattiasson G, Ohlsson J, Karlsson J, Keep MF et al (2004) Brain-derived respiring mitochondria exhibit homogeneous, complete and cyclosporin-sensitive permeability transition. J Neurochem 89(3):715–729

    Article  CAS  PubMed  Google Scholar 

  34. Hansson MJ, Mattiasson G, Mansson R, Karlsson J, Keep MF, Waldmeier P et al (2004) The nonimmunosuppressive cyclosporin analogs NIM811 and UNIL025 display nanomolar potencies on permeability transition in brain-derived mitochondria. J Bioenerg Biomembr 36(4):407–413

    Article  CAS  PubMed  Google Scholar 

  35. Hansson MJ, Persson T, Friberg H, Keep MF, Rees A, Wieloch T et al (2003) Powerful cyclosporin inhibition of calcium-induced permeability transition in brain mitochondria. Brain Res 960(1–2):99–111

    Article  CAS  PubMed  Google Scholar 

  36. Lloyde-Jones D, Adams RJ, Brown TM et al (2010) Heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215

    Article  Google Scholar 

  37. Krause GS, Kumar K, White BC et al (1986) Ischemia, resuscitation, and reperfusion: mechanisms of tissue injury and prospects for protection. Am Heart J 111(4):768–780

    Article  CAS  PubMed  Google Scholar 

  38. Vannucci RC (2000) hypoxic-ischemic encephalopathy. Am J Perinatol 17(3):113–120

    Article  CAS  PubMed  Google Scholar 

  39. Fraser PA (2011) The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 51:967–977

    Article  CAS  PubMed  Google Scholar 

  40. Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34:232–237

    Article  CAS  PubMed  Google Scholar 

  41. Broughton BR, Reuter DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339

    Article  PubMed  Google Scholar 

  42. Sanderson TH, Reynolds CA, Kumar R et al (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Chen Q, Vazquez EJ, Moghaddas S et al (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    Article  CAS  PubMed  Google Scholar 

  44. Cali T, Ottolini D, Brini M (2012) Mitochondrial Ca2+ and neurodegeneration. Cell Calcium 52:73–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354

    Article  CAS  PubMed  Google Scholar 

  46. Ahmad M, Dar NJ, Bhat ZS et al (2014) Inflammation in ischemic stroke: mechanisms, consequences and possible drug targets. CNS Neurol Disord Drug Targets 13(8):1378–1396

    Article  CAS  PubMed  Google Scholar 

  47. Di FM, Chiasserini D, Tozzi A et al (2010) Mitochondria and the link between neuroinflammation and neurodegeneration? Mitochondrion 10:411–418

    Article  Google Scholar 

  48. Knoll G, Brdiczka D (1983) Changes in freeze-fractured mitochondrial membranes correlated to their energetic state. Dynamic interactions of the boundary membranes. Biochim Biophys Acta 733(1):102–110

    Article  CAS  PubMed  Google Scholar 

  49. Crompton M, Barksby E, Johnson N, Capano M (2002) Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84(2–3):143–152

    Article  CAS  PubMed  Google Scholar 

  50. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662

    Article  CAS  PubMed  Google Scholar 

  51. Gajavelli S, Sinha VK, Mazzeo AT et al (2014) Evidence to support mitochondrial neuroprotection, in severe traumatic brain injury. J Bioenerg Biomembr. [Epub ahead of print]

    Google Scholar 

  52. Hansson MJ, Morota S, Chen L et al (2011) Cyclophilin D-sensitive mitochondrial permeability transition in adult human brain and liver mitochondria. J Neurotrauma 28(1):143–153

    Article  PubMed Central  PubMed  Google Scholar 

  53. Uchino H, Hatakeyama K, Morota S et al (2013) Cyclophilin-D inhibition in neuroprotection: dawn of a new era of mitochondrial medicine. Acta Neurochir Suppl 118:311–315

    PubMed  Google Scholar 

  54. Vinogradov A, Scarpa A, Chance B (1972) Calcium and pyridine nucleotide interaction in mitochondrial membranes. Arch Biochem Biophys 152(2):646–654

    Article  CAS  PubMed  Google Scholar 

  55. Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251(16):5069–5077

    CAS  PubMed  Google Scholar 

  56. Wang JH, Desai R (1976) A brain protein and its effect on the Ca2+-and protein modulator-activated cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 72(3):926–932

    Article  CAS  PubMed  Google Scholar 

  57. Yakel JL (1997) Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci 18(4):124–134

    Article  CAS  PubMed  Google Scholar 

  58. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66(4):807–815

    Article  CAS  PubMed  Google Scholar 

  59. Morioka M, Hamada J, Ushio Y, Miyamoto E (1999) Potential role of calcineurin for brain ischemia and traumatic injury. Prog Neurobiol 58(1):1–30

    Article  CAS  PubMed  Google Scholar 

  60. Shibasaki F, Kondo E, Akagi T, McKeon F (1997) Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2. Nature 386(6626):728–731

    Article  CAS  PubMed  Google Scholar 

  61. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F et al (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284(5412):339–343

    Article  CAS  PubMed  Google Scholar 

  62. Sharkey J, Butcher SP (1994) Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 371(6495):336–339

    Article  CAS  PubMed  Google Scholar 

  63. Waldmeier PC, Zimmermann K, Qian T, Tintelnot-Blomley M, Lemasters JJ (2003) Cyclophilin D as a drug target. Curr Med Chem 10(16):1485–1506

    Article  CAS  PubMed  Google Scholar 

  64. Shalbuyeva N, Brustovetsky T, Bolshakov A, Brustovetsky N (2006) Calcium-dependent spontaneously reversible remodeling of brain mitochondria. J Biol Chem 281(49):37547–37558

    Article  CAS  PubMed  Google Scholar 

  65. Mbye LH, Singh IN, Sullivan PG, Springer JE, Hall ED (2008) Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp Neurol 209(1):243–253

    Article  CAS  PubMed  Google Scholar 

  66. Ravikumar R, McEwen ML, Springer JE (2007) Post-treatment with the cyclosporin derivative, NIM811, reduced indices of cell death and increased the volume of spared tissue in the acute period following spinal cord contusion. J Neurotrauma 24(10):1618–1630

    Article  PubMed  Google Scholar 

  67. McEwen ML, Sullivan PG, Springer JE (2007) Pretreatment with the cyclosporin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats. J Neurotrauma 24(4):613–624

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Uchino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Uchino, H., Chijiiwa, M., Ogihara, Y., Elmer, E. (2015). Molecular Mechanisms of Brain Ischemia and Its Protection. In: Uchino, H., Ushijima, K., Ikeda, Y. (eds) Neuroanesthesia and Cerebrospinal Protection. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54490-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54490-6_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54489-0

  • Online ISBN: 978-4-431-54490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics