Skip to main content

Role of Microdialysis in Neuroanesthesia

  • Chapter
  • 1535 Accesses

Abstract

Brain microdialysis is a well-established technique used to monitor the chemistry of the extracellular space in the brain during neurointensive care. Microdialysis may be useful in severe cases of traumatic brain injury, stroke, and hypoxic brain injury in which monitoring of intracranial pressure and cerebral perfusion pressure is required. The parenchymal concentrations of glucose, lactate, pyruvate, glutamate, and glycerol can be measured at the bedside. As the primary source of energy, glucose is an important marker of changes in cerebral metabolism and reflects systemic supply, which is influenced by capillary perfusion, ischemia, and blood glucose concentration. The lactate–pyruvate (L/P) ratio is a sensitive marker of changes in the redox state of cells brought about by ischemia. The glutamate concentration is an indirect marker of cell damage or ischemia. Glycerol concentration reflects cell membrane damage, as glycerol is an integral component of cell membranes. Loss of energy due to ischemia eventually leads to an influx of calcium and a decomposition of cell membranes, which liberates glycerol into the interstitial fluid. Microdialysis, when used with other brain monitoring techniques, may be a useful means of preventing and relieving secondary ischemic injury, predicting outcome and guiding therapy after severe brain damage. However, the value of microdialysis as a tool in routine neurointensive care decision-making remains unclear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41

    Article  PubMed  Google Scholar 

  2. Ståhl N, Mellergård P, Hallström A et al (2001) Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand 45:977–985

    Article  PubMed  Google Scholar 

  3. Reinstrup P, Ståhl N, Mellergård P et al (2004) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–709

    Google Scholar 

  4. Vespa P, Bergsneider M, Hattori N et al (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kett-White R, Hutchinson PJ, Al-Rawi PG et al (2002) Cerebral oxygen and microdialysis monitoring during aneurysm surgery: effects of blood pressure, cerebrospinal fluid drainage, and temporary clipping on infarction. J Neurosurg 96:1013–1019

    Article  PubMed  Google Scholar 

  6. Glenn TC, Kelly DF, Boscardin WJ et al (2003) Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 23:1239–1250

    Article  CAS  PubMed  Google Scholar 

  7. Vespa PM, McArthur D, O’Phelan K et al (2003) Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 23:865–877

    Article  CAS  PubMed  Google Scholar 

  8. Oddo M, Schmidt JM, Carrera E et al (2008) Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 36:3233–3238

    Article  CAS  PubMed  Google Scholar 

  9. Vespa P, Boonyaputthikul R, McArthur DL et al (2006) Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med 34:850–856

    Article  CAS  PubMed  Google Scholar 

  10. Vespa P, McArthur DL, Stein N et al (2012) Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med 40:1923–1929

    Article  CAS  PubMed  Google Scholar 

  11. Timofeev I, Carpenter KL, Nortje J et al (2011) Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134:484–494

    Article  PubMed  Google Scholar 

  12. Kawai N, Kawakita K, Yano T et al (2010) Use of intracerebral microdialysis in severe traumatic brain injury. No Shinkei Geka 38:795–809

    PubMed  Google Scholar 

  13. Sarrafzadeh A, Haux D, Sakowitz O et al (2003) Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke 34:1382–1388

    Article  CAS  PubMed  Google Scholar 

  14. Sarrafzadeh AS, Haux D, Ludemann L et al (2004) Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study. Stroke 35:638–643

    Article  PubMed  Google Scholar 

  15. Sarrafzadeh AS, Sakowitz OW, Kiening KL et al (2002) Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med 30:1062–1070

    Article  PubMed  Google Scholar 

  16. Oddo M, Milby A, Chen I et al (2009) Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke 40:1275–1281

    Article  CAS  PubMed  Google Scholar 

  17. Ko SB, Choi HA, Parikh G et al (2011) Multimodality monitoring for cerebral perfusion pressure optimization in comatose patients with intracerebral hemorrhage. Stroke 42:3087–3092

    Article  PubMed Central  PubMed  Google Scholar 

  18. Schmidt JM, Ko SB, Helbok R et al (2011) Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke 42:1351–1356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Helbok R, Schmidt JM, Kurtz P et al (2010) Systemic glucose and brain energy metabolism after subarachnoid hemorrhage. Neurocrit Care 12:317–323

    Article  CAS  PubMed  Google Scholar 

  20. Bossers SM, Peerdeman SM, Oedayrajsingh Varma P et al (2012) Increase in cerebral metabolites during induction of propofol anaesthesia. Br J Anaesth 108:165–167

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kuroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kuroda, Y., Kawai, N., Kawakita, K. (2015). Role of Microdialysis in Neuroanesthesia. In: Uchino, H., Ushijima, K., Ikeda, Y. (eds) Neuroanesthesia and Cerebrospinal Protection. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54490-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54490-6_17

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54489-0

  • Online ISBN: 978-4-431-54490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics