Skip to main content

Mathematical Models for Aircraft Trajectory Design: A Survey

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 290)

Abstract

Air traffic management ensures the safety of flight by optimizing flows and maintaining separation between aircraft. After giving some definitions, some typical feature of aircraft trajectories are presented. Trajectories are objects belonging to spaces with infinite dimensions. The naive way to address such problem is to sample trajectories at some regular points and to create a big vector of positions (and or speeds). In order to manipulate such objects with algorithms, one must reduce the dimension of the search space by using more efficient representations. Some dimension reduction tricks are then presented for which advantages and drawbacks are presented. Then, front propagation approaches are introduced with a focus on Fast Marching Algorithms and Ordered upwind algorithms. An example of application of such algorithm to a real instance of air traffic control problem is also given. When aircraft dynamics have to be included in the model, optimal control approaches are really efficient. We present also some application to aircraft trajectory design. Finally, we introduce some path planning techniques via natural language processing and mathematical programming.

Keywords

  • Aircraft trajectory design
  • B-spline
  • Principal component analysis
  • Bézier
  • Homotopy
  • Optimal control
  • Air traffic management
  • Strategic planning
  • Pre-tactical planning
  • Tactical planning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-54475-3_12
  • Chapter length: 43 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-54475-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Notes

  1. 1.

    TMA: “Terminal Maneuvering Area”.

  2. 2.

    The convex hull or convex envelope of a set X of points in the Euclidean plane or Euclidean space is the smallest convex set that contains X.

References

  1. Atkins EM, Portillo IA, Strube MJ (2006) Emergency flight planning applied to total loss of thrust. J Guid Control Dyn 43(4):1205–1216

    Google Scholar 

  2. Bakolas E, Zhao Y, Tsiotras P (2011) Initial guess generation for aircraft landing trajectory optimization. In: AIAA guidance, navigation, and control conference. AIAA

    Google Scholar 

  3. Bartels RH, Beatty JC, Barskyn BA (1998) An introduction to splines for use in computer graphics and geometric modeling. Computer graphics. Morgan Kaufmann, San Francisco

    Google Scholar 

  4. Becerra VM (2011) Psopt optimal control solver user manual. Tech. report

    Google Scholar 

  5. Bellingham J, Kuwata Y, How J (2003) Stable receding horizon trajectory control for complex environment. In: AIAA guidance, navigation, and control conference and exhibit. AIAA

    Google Scholar 

  6. Berger M, Gostiaux B (1988) Differential geometry: manifolds, curves and surfaces. Springer, New York

    CrossRef  MATH  Google Scholar 

  7. Betts JT (1998) Survey of numerical methods for trajectory optimization. J Guid Control Dyn 21(2):193–207

    CrossRef  MATH  Google Scholar 

  8. Betts JT, Huffman WP (1997) Sparse optimal control software SOCS. Tech. report, Mathematics and Engineering Analysis Technical Document MEALR-085, Boeing Information and Support Services, The Boeing Company

    Google Scholar 

  9. Betts JT, Huffman WP (1998) Mesh refinement in direct transcription methods for optimal control. Optim Control Appl Methods 19(1):1–21

    CrossRef  MathSciNet  Google Scholar 

  10. Betts JT, Biehn N, Campbell SL, Huffman WP (2000) Compensating for order variation in mesh refinement for direct transcription methods. J Comput Appl Math 125:147–158

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Binder T, Blank L, Dahmen W, Marquardt W (2000) Grid refinement in multiscale dynamic optimization. Tech. report, RWTH Aachen

    Google Scholar 

  12. Birkhoff G, de Boor C (1964) Piecewise polynomial interpolation and approximation. In: Proceeding of the general motors symposium of 1964. General Motors

    Google Scholar 

  13. Brudnicki DJ, McFarland AL (1997) User request evaluation tool (uret) conflict probe performance and benefits assessment. In: Proceeding of the air traffic management seminar, FAA/Eurocontrol

    Google Scholar 

  14. Bulirsch R, Montrone F, Pesch HJ (1991) Abort landing in the presence of windshear as a minimax optimal control problem. Part I: necessary conditions. J Optim Theory Appl 70(1):1–23

    MATH  MathSciNet  Google Scholar 

  15. Bulirsch R, Montrone F, Pesch HJ (1991) Abort landing in the presence of windshear as a minimax optimal control problem. Part II: multiple shooting and homotopy. J Optim Theory Appl 70(2):223–254

    MATH  MathSciNet  Google Scholar 

  16. Burrows JW (1983) Fuel-optimal aircraft trajectories with fixed arrival times. J Guid Control Dyn 6(1):14–19

    CrossRef  Google Scholar 

  17. Chaimatanan S, Delahaye D, Mongeau M (2012) Conflict free strategic planning. In: Proceeding of the 2012 interdisciplinary science for innovative air traffic management conference. ERAU

    Google Scholar 

  18. Chakravarty A (1985) Four-dimensional fuel-optimal guidance in the presence of winds. J Guid Control Dyn 8(1):16–22

    CrossRef  Google Scholar 

  19. Coppenbarger R, Lanier R, Sweet D, Dorsky S (2004) Design and development of the enroute descent advisor (eda) for conflict-free arrival metering. In: Proceeding of the AIAA-2004-4875 AIAA GNC conference. AIAA GNC

    Google Scholar 

  20. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  21. de Boor C (1978) A practical guide to splines. Springer, New York

    CrossRef  MATH  Google Scholar 

  22. Dougui N, Delahaye S, Puechmorel D, Mongeau M (2012) A light-propagation model for aircraft trajectory planning. J Glob Optim 56:873–895

    CrossRef  MathSciNet  Google Scholar 

  23. Enright PJ, Conway BA (1992) Discrete approximation to optimal trajectories using direct transcription and nonlinear programming. J Guid Control Dyn 15:994–1002

    CrossRef  MATH  Google Scholar 

  24. Erzberger H, Paielli RA, Isaacson DR, Eshowl MM (1997) Conflict detection in the presence of prediction error. In: Proceeding of the air traffic management seminar, FAA/Eurocontrol

    Google Scholar 

  25. Evans J et al (2003) Reducing severe weather delays in congested airspace with weather support for tactical air traffic management. In: Proceeding of the air traffic management seminar, FAA/Eurocontrol

    Google Scholar 

  26. Ewing GM (1969) Calculus of variations with applications. Norton, New York, reprinted by Dover, 1985

    Google Scholar 

  27. Farin G (1993) Curves and surfaces for computer aided geometric design. A practical guide. Academic, San Diego

    Google Scholar 

  28. Farin G, Hansford D (2000) The essentials of CAGD. A K Peters, Natick

    MATH  Google Scholar 

  29. Giancoli DC (1989) Physics for scientists and engineers with modern physics, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  30. Gong Q, Fahroo F, Ross IM (2008) Spectral algorithm for pseudospectral methods in optimal control. J Guid Control Dyn 31(3):460–471

    CrossRef  MathSciNet  Google Scholar 

  31. Grimm W, Well K, Oberle H (1986) Periodic control for minimum-fuel aircraft trajectories. J Guid Control Dyn 9(2):169–174

    CrossRef  MATH  Google Scholar 

  32. Hargraves CR, Paris SW (1992) Direct trajectory optimization using nonlinear programming and collocation. J Guid Control Dyn 15:994–1002

    CrossRef  Google Scholar 

  33. Heath MT (2002) Scientific computing, an introductory survey. Computer graphics. McGraw-Hill, New York

    Google Scholar 

  34. Jackson MR, Zhao Y, Slattery RA (1999) Sensitivity of trajectory prediction in air traffic management. J Guid Control Dyn 22(2):219–228

    CrossRef  Google Scholar 

  35. Jacobson M, Ringertz UT (2010) Airspace constraints in aircraft emission trajectory optimization. J Aircraft 47:1256–1265

    CrossRef  Google Scholar 

  36. Jain S, Tsiotras P (2008) Multiresolution-based direct trajectory optimization. J Guid Control Dyn 31(5):1424–1436

    CrossRef  MathSciNet  Google Scholar 

  37. Jain S, Tsiotras P (2008) Trajectory optimization using multiresolution techniques. J Guid Control Dyn 31(5):1424–1436

    CrossRef  MathSciNet  Google Scholar 

  38. Jardin MR, Bryson AE (2001) Neighboring optimal aircraft guidance in winds. J Guid Control Dyn 24:710–715

    CrossRef  Google Scholar 

  39. Jeffreys H, Jeffreys BS (1988) Methods of mathematical physics. Cambridge University Press, Cambridge

    Google Scholar 

  40. Kelley HJ (1973) Control and dynamic systems: advances in theory and applications. Academic, New York

    Google Scholar 

  41. Kirk DB et al (2001) Problem analysis resolution and ranking (parr) development and assessment. In: Proceeding of the air traffic management seminar, FAA/Eurocontrol

    Google Scholar 

  42. LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge

    CrossRef  MATH  Google Scholar 

  43. Liu W, Hwang I (2012) Probabilistic aircraft mid-air conflict resolution using stochastic optimal control. IEEE Intell Transp Syst Trans Mag

    Google Scholar 

  44. Lu P (1999) Regulation about time-varying trajectories: precision entry guidance illustrated. J Guid Control Dyn 22:784–790

    CrossRef  Google Scholar 

  45. MasalonisA et al (2004) Using probabilistic demand prediction for traffic flow management decision support. In: Proceeding of the AIAA-2004-4875 AIAA GNC conference. AIAA GNC

    Google Scholar 

  46. McNally BD, Bach RE, Chan W (1998) Field test evaluation of the ctas conflict prediction and trial planning capability. In: Proceeding of the AIAA-1998-4480 AIAA GNC conference. AIAA GNC

    Google Scholar 

  47. Meckiff C, Chone R, Nicolaon JP (1998) The tactical load smoother for multi-sector planning. In: Proceeding of the air traffic management seminar, FAA/Eurocontrol

    Google Scholar 

  48. Miele A (1990) Optimal trajectories and guidance trajectories for aircraft flight through windshears. In: Proceedings of the 29th IEEE conference on decision and control. IEEE

    Google Scholar 

  49. Mondoloni S, Bayraktuta I (2005) Impact of factors, conditions and metrics on trajectory prediction accuracy. In: Proceeding of the air traffic management seminar, FAA/Eurocontrol

    Google Scholar 

  50. Mondoloni S, Pagli SM, Green S (2002) Trajectory modeling accuracy for air traffic management decision support tools. In: Proceeding of the ICAS conference. ICAS, Toronto

    Google Scholar 

  51. Oberle HJ, Grimm W (1989) BNDSCO - a program for the numerical solution of optimal control problems. Tech. report. Institute for Flight System Dynamics, German Aerospace Research Establishment Oberpfaffenhofen

    Google Scholar 

  52. Ohtsuka T (2002) Quasi-Newton-type continuation method for nonlinear receding horizon control. J Guid Control Dyn 24:685–692

    CrossRef  Google Scholar 

  53. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    CrossRef  MATH  MathSciNet  Google Scholar 

  54. Pontryagin LS, Boltyanski VG, Gamkrelidze RV, Mischenko EF (1962) The mathematical theory of optimal processes. Interscience, New York

    MATH  Google Scholar 

  55. Pêtrès C, Pailhas Y, Patron P, Petillot Y, Evans J, Lane D (2007) Path planning for autonomous underwater vehicles. IEEE Trans Robot 23(2):331–341

    CrossRef  Google Scholar 

  56. Ramsay JO, Silverman BW (2005) Functional data analysis. Springer series in statistics. Springer, New York

    Google Scholar 

  57. Rao AV, Benson D, Huntington GT (2011) User’s manual for GPOPS version 4.x: a matlab package for software for solving multiple-phase optimal control problems using hp-adaptive pseudospectral methods. Tech. report

    Google Scholar 

  58. Roche E (1997) Parsing with finite-state transducers. In: Roche E, Schabes Y (eds) Finite-state language processing. MIT Press, Cambridge

    Google Scholar 

  59. Ross IM (2005) User’s manual for DIDO: a MATLAB application package for solving optimal control problems. Tech. report, Naval Postgraduate School

    Google Scholar 

  60. Russell RD, Shampine LF (1972) A collocation method for boundary value problems. Numerische Mathematik 19:13–36

    CrossRef  MathSciNet  Google Scholar 

  61. Ryan HF, Paglione M, Green S (2004) Review of trajectory accuracy methodology and comparison of error measure metrics. In: Proceedings of the AIAA-2004-4787 AIAA GNC conference. AIAA GNC

    Google Scholar 

  62. Schouwenaars T, How J, Feron E (2004) Receding horizon path planning with implicit safety guarantees. In: American control conference, Boston, MA, June 2004, pp 5576–5581

    Google Scholar 

  63. Schouwenaars T, Valenti M, Feron E, How J, Roche E (2006) Linear programming and language processing for human/unmanned-aerial-vehicle team missions. AIAA J Guid Control Dyn 29(2):303–313

    CrossRef  Google Scholar 

  64. Schultz RL (1990) Three-dimensional trajectory optimization for aircraft. J Guid Control Dyn 13(6):936–943

    CrossRef  Google Scholar 

  65. Schwartz A (1996) Theory and implementation of numerical methods based on runge-kutta integration for solving optimal control problems. Ph.D. thesis, Université Montpellier II, France

    Google Scholar 

  66. Sethian JA (1999) Fast marching methods. SIAM Rev 41(2):199–235

    MATH  MathSciNet  Google Scholar 

  67. Sethian JA, Vladimirsky A (2003) Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms. SIAM J Num Anal 41:325–363

    CrossRef  MATH  MathSciNet  Google Scholar 

  68. Seywald H (1994) Long flight-time range-optimal aircraft trajectories. J Guid Control Dyn 19(1):242–244

    CrossRef  MathSciNet  Google Scholar 

  69. Seywald H, Cliff EM (1994) Neighboring optimal control based feedback law for the advanced launch system. J Guid Control Dyn 17:1154–1162

    CrossRef  Google Scholar 

  70. Seywald H, Cliff EM, Well K (1994) Range optimal trajectories for an aircraft flying in the vertical plane. J Guid Control Dyn 17(2):389–398

    CrossRef  Google Scholar 

  71. Slattery RA, Zhao Y (1997) Trajectory synthesis for air traffic automation. J Guid Control Dyn 20(2):232–238

    CrossRef  MATH  Google Scholar 

  72. Sridhar B, Ng HK, Chen NY (2011) Aircraft trajectory optimization and contrails avoidance in the presence of winds. J Guid Control Dyn 34:1577–1583

    CrossRef  Google Scholar 

  73. Strube MJ, Sanner RM, Atkins EM (2004) Dynamic flight guidance recalibration after actuator failure. In: AIAA 1st intelligent systems technical conference. AIAA

    Google Scholar 

  74. SudV et al (2001) Air traffic flow management collaborative routing coordination tools. In: Proceeding of the AIAA-2001-4112 AIAA GNC conference. AIAA GNC

    Google Scholar 

  75. Swensen HN et al (1997) Design and operational evaluation of the traffic management advisor at the forth worth air route traffic control center. In: Proceeding of the air traffic management seminar, FAA/Eurocontrol

    Google Scholar 

  76. Swierstra S, Green S (2003) Common trajectory prediction capability for decision support tools. In: Proceeding of the air traffic management seminar, FAA/Eurocontrol

    Google Scholar 

  77. Tomlin C, Pappas GJ, Sastry S (1998) Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE Trans Automat Control 43:509–521

    CrossRef  MATH  MathSciNet  Google Scholar 

  78. Vink A (1997) Eatchip medium term conflict detection: part 1 eatchip context. In: Proceeding of the air traffic management seminar, FAA/Eurocontrol

    Google Scholar 

  79. Weiss R (1974) The application of implicit Runge-Kutta and collocation methods to boundary value problems. Math Comput 28:449–464

    MATH  Google Scholar 

  80. Williams P (2004) Application of pseudospectral methods for receding horizon control. J Guid Control Dyn 27:310–314

    CrossRef  Google Scholar 

  81. Yan H, Fahroo F, Ross IM (2002) Real-time computation of neighboring optimal control laws. In: AIAA guidance, navigation, and control conference and exhibit. AIAA

    Google Scholar 

  82. Zhao Y (2011) Efficient and robust aircraft landing trajectory optimization. Ph.D. thesis, School of Aerospace Engineering, Georgia Institute of Technology

    Google Scholar 

  83. Zhao Y, Tsiotras P (2010) Density functions for mesh refinement in numerical optimal control. J Guid Control Dyn 34(1):271–277

    CrossRef  Google Scholar 

  84. Zhao Y, Tsiotras P (2010) Time-optimal parameterization of geometric path for fixed-wing aircraft. In: Infotech@Aerospace. AIAA, Atlanta

    Google Scholar 

  85. Zhao Y, Tsiotras P (2011) Stable receding horizon trajectory control for complex environment. In: American control conference (ACC), San Francisco, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Delahaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Delahaye, D., Puechmorel, S., Tsiotras, P., Feron, E. (2014). Mathematical Models for Aircraft Trajectory Design: A Survey. In: Air Traffic Management and Systems. Lecture Notes in Electrical Engineering, vol 290. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54475-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54475-3_12

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54474-6

  • Online ISBN: 978-4-431-54475-3

  • eBook Packages: EngineeringEngineering (R0)