Skip to main content

IL-18

Regulation and Physiological Roles of IL-18

  • Chapter
  • First Online:
Cytokine Frontiers

Abstract

Interleukin-18 (IL-18) belongs to the IL-1 cytokine family, which has crucial roles in innate immunity and inflammation. These cytokines share similar molecular structures, receptor structures, and signal transduction pathways. Each cytokine, however, acts on distinct types of cells that express their specific receptor. The functional IL-18 receptor is specifically induced by cytokines such as IL-2 and IL-12. During innate immune responses, IL-1β acts primarily on Th17 cells, leading to the recruitment of neutrophils, whereas IL-18 in the presence of IL-2 or IL-12 induces Th1-type responses in natural killer (NK) and CD8+ T cells, which induces reactive oxygen species and nitric oxide production in macrophages. IL-18 is constitutively expressed in hematopoietic cells and nonhematopoietic cells in tissues where cells are rapidly dividing. Similar to IL-1β, the inactive precursor of IL-18 is proteolytically converted to a mature form by caspase-1 in inflammasome complexes. Although the molecular mechanism by which IL-18 is activated by inflammasomes has been clarified, the regulatory mechanism underlying the expression of IL-18 receptors, the effect of signaling on organelles such as mitochondria, and the biological roles of IL-18 in nonhematopoietic cells remain to be elucidated. Accumulating evidence suggests that IL-18 is not merely a cytokine inducer, but a molecule involved in the viability and terminal differentiation of various cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn IE, Ju JH, Lee SY, Park JS, Oh HJ, Kim HR, Lee SH, Park SH, Kim HY, Cho ML (2012) Upregulation of stromal cell-derived factor by IL-17 and IL-18 via a phosphatidylinositol 3-kinase-dependent pathway. Scand J Immunol 76:433–439

    PubMed  CAS  Google Scholar 

  • Alboni S, Montanari C, Benatti C, Blom JM, Simone ML, Brunello N, Caggia F, Guidotti G, Marcondes MC, Sanchez-Alavez M et al (2011) Constitutive and LPS-regulated expression of interleukin-18 receptor beta variants in the mouse brain. Brain Behav Immun 25:483–493

    PubMed  CAS  Google Scholar 

  • Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C, Ting JP (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207:1045–1056

    PubMed  CAS  Google Scholar 

  • Amin MA, Rabquer BJ, Mansfield PJ, Ruth JH, Marotte H, Haas CS, Reamer EN, Koch AE (2010) Interleukin 18 induces angiogenesis in vitro and in vivo via Src and Jnk kinases. Ann Rheum Dis 69:2204–2212

    PubMed  CAS  Google Scholar 

  • Arend WP, Palmer G, Gabay C (2008) IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 223:20–38

    PubMed  CAS  Google Scholar 

  • Artlett CM (2013) Inflammasomes in wound healing and fibrosis. J Pathol 229:157–167

    PubMed  CAS  Google Scholar 

  • Badimon L (2012) Interleukin-18: a potent pro-inflammatory cytokine in atherosclerosis. Cardiovasc Res 96:172–175, discussion 176–180

    PubMed  CAS  Google Scholar 

  • Bauer C, Duewell P, Lehr HA, Endres S, Schnurr M (2012) Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: influence of genetic and environmental factors. Dig Dis 30(suppl 1):82–90

    PubMed  Google Scholar 

  • Ben Hamad M, Cornelis F, Marzouk S, Chabchoub G, Bahloul Z, Rebai A, Fakhfakh F, Ayadi H, Petit-Teixeira E, Maalej A (2012) Association study of CARD8 (p.C10X) and NLRP3 (p.Q705K) variants with rheumatoid arthritis in French and Tunisian populations. Int J Immunogenet 39:131–136

    PubMed  CAS  Google Scholar 

  • Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M, Shapira I, Dinarello CA, Paul WE (2009) IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci USA 106:7119–7124

    PubMed  CAS  Google Scholar 

  • Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, Meyer J, Rupprecht HJ, AtheroGene I (2002) Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 106:24–30

    PubMed  CAS  Google Scholar 

  • Boraschi D, Lucchesi D, Hainzl S, Leitner M, Maier E, Mangelberger D, Oostingh GJ, Pfaller T, Pixner C, Posselt G et al (2011) IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur Cytokine Netw 22:127–147

    PubMed  CAS  Google Scholar 

  • Bossu P, Ciaramella A, Salani F, Vanni D, Palladino I, Caltagirone C, Scapigliati G (2010) Interleukin-18, from neuroinflammation to Alzheimer’s disease. Curr Pharm Des 16:4213–4224

    PubMed  CAS  Google Scholar 

  • Bufler P, Azam T, Gamboni-Robertson F, Reznikov LL, Kumar S, Dinarello CA, Kim SH (2002) A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc Natl Acad Sci USA 99:13723–13728

    PubMed  CAS  Google Scholar 

  • Cao R, Farnebo J, Kurimoto M, Cao Y (1999) Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J 13:2195–2202

    PubMed  CAS  Google Scholar 

  • Cayrol C, Girard JP (2009) The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci USA 106:9021–9026

    PubMed  CAS  Google Scholar 

  • Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F (2011) Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1beta is deleterious. PLoS Pathog 7:e1002452

    PubMed  CAS  Google Scholar 

  • Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M (2005) Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem 280:4553–4567

    PubMed  CAS  Google Scholar 

  • Chen GY, Nunez G (2011) Inflammasomes in intestinal inflammation and cancer. Gastroenterology 141:1986–1999

    PubMed  CAS  Google Scholar 

  • Chen GY, Liu M, Wang F, Bertin J, Nunez G (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 186:7187–7194

    PubMed  CAS  Google Scholar 

  • Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, Dong C (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587

    PubMed  CAS  Google Scholar 

  • Conforti-Andreoni C, Ricciardi-Castagnoli P, Mortellaro A (2011) The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond. Cell Mol Immunol 8:135–145

    PubMed  CAS  Google Scholar 

  • Costelloe C, Watson M, Murphy A, McQuillan K, Loscher C, Armstrong ME, Garlanda C, Mantovani A, O’Neill LA, Mills KH, Lynch MA (2008) IL-1F5 mediates anti-inflammatory activity in the brain through induction of IL-4 following interaction with SIGIRR/TIR8. J Neurochem 105:1960–1969

    PubMed  CAS  Google Scholar 

  • Dinarello CA (2007) Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephrol 27:98–114

    PubMed  CAS  Google Scholar 

  • Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    PubMed  CAS  Google Scholar 

  • Dinarello CA, Fantuzzi G (2003) Interleukin-18 and host defense against infection. J Infect Dis 187(suppl 2):S370–S384

    PubMed  CAS  Google Scholar 

  • Elhage R, Jawien J, Rudling M, Ljunggren HG, Takeda K, Akira S, Bayard F, Hansson GK (2003) Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 59:234–240

    PubMed  CAS  Google Scholar 

  • Fassbender K, Mielke O, Bertsch T, Muehlhauser F, Hennerici M, Kurimoto M, Rossol S (1999) Interferon-gamma-inducing factor (IL-18) and interferon-gamma in inflammatory CNS diseases. Neurology 53:1104–1106

    PubMed  CAS  Google Scholar 

  • Fix C, Bingham K, Carver W (2011) Effects of interleukin-18 on cardiac fibroblast function and gene expression. Cytokine 53:19–28

    PubMed  CAS  Google Scholar 

  • Fortin CF, Ear T, McDonald PP (2009) Autocrine role of endogenous interleukin-18 on inflammatory cytokine generation by human neutrophils. FASEB J 23:194–203

    PubMed  CAS  Google Scholar 

  • Fujimori Y, Takatsuka H, Takemoto Y, Hara H, Okamura H, Nakanishi K, Kakishita E (2000) Elevated interleukin (IL)-18 levels during acute graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol 109:652–657

    PubMed  CAS  Google Scholar 

  • Gage J, Hasu M, Thabet M, Whitman SC (2012) Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can J Cardiol 28:222–229

    PubMed  CAS  Google Scholar 

  • Garg NJ (2011) Inflammasomes in cardiovascular diseases. Am J Cardiovasc Dis 1:244–254

    PubMed  CAS  Google Scholar 

  • Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, Kennedy K, Carter R, Wei XQ, Xu D et al (1999) A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 104:1393–1401

    PubMed  CAS  Google Scholar 

  • Gram AM, Frenkel J, Ressing ME (2012) Inflammasomes and viruses: cellular defence versus viral offence. J Gen Virol 93:2063–2075

    PubMed  CAS  Google Scholar 

  • Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Okamura H, Nakanishi K et al (1997) Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 275:206–209

    PubMed  CAS  Google Scholar 

  • Gutcher I, Urich E, Wolter K, Prinz M, Becher B (2006) Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat Immunol 7:946–953

    PubMed  CAS  Google Scholar 

  • Haastrup E, Bukh JD, Bock C, Vinberg M, Thorner LW, Hansen T, Werge T, Kessing LV, Ullum H (2012) Promoter variants in IL18 are associated with onset of depression in patients previously exposed to stressful-life events. J Affect Disord 136:134–138

    PubMed  CAS  Google Scholar 

  • Hirata J, Kotani J, Aoyama M, Kashiwamura S, Ueda H, Kuroda Y, Usami M, Okamura H, Marukawa S (2008) A role for IL-18 in human neutrophil apoptosis. Shock 30:628–633

    PubMed  CAS  Google Scholar 

  • Hodge DL, Subleski JJ, Reynolds DA, Buschman MD, Schill WB, Burkett MW, Malyguine AM, Young HA (2006) The proinflammatory cytokine interleukin-18 alters multiple signaling pathways to inhibit natural killer cell death. J Interferon Cytokine Res 26:706–718

    PubMed  CAS  Google Scholar 

  • Hosotani Y, Kashiwamura S, Kimura-Shimmyo A, Sekiyama A, Ueda H, Ikeda T, Mimura O, Okamura H (2008) Interleukin-18 prevents apoptosis via PI3K/Akt pathway in normal human keratinocytes. J Dermatol 35:514–524

    PubMed  CAS  Google Scholar 

  • Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N (2004) The essential involvement of cross-talk between IFN-gamma and TGF-beta in the skin wound-healing process. J Immunol 172:1848–1855

    PubMed  CAS  Google Scholar 

  • Ishikura T, Kanai T, Uraushihara K, Iiyama R, Makita S, Totsuka T, Yamazaki M, Sawada T, Nakamura T, Miyata T et al (2003) Interleukin-18 overproduction exacerbates the development of colitis with markedly infiltrated macrophages in interleukin-18 transgenic mice. J Gastroenterol Hepatol 18:960–969

    PubMed  CAS  Google Scholar 

  • Ito A, Matejuk A, Hopke C, Drought H, Dwyer J, Zamora A, Subramanian S, Vandenbark AA, Offner H (2003) Transfer of severe experimental autoimmune encephalomyelitis by IL-12- and IL-18-potentiated T cells is estrogen sensitive. J Immunol 170:4802–4809

    PubMed  CAS  Google Scholar 

  • Iwata M, Ota KT, Duman RS (2013) The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun 31C:105–114

    Google Scholar 

  • Jacobs SR, Damania B (2012) NLRs, inflammasomes, and viral infection. J Leukoc Biol 92:469–477

    PubMed  CAS  Google Scholar 

  • Jefferis BJ, Papacosta O, Owen CG, Wannamethee SG, Humphries SE, Woodward M, Lennon LT, Thomson A, Welsh P, Rumley A et al (2011) Interleukin 18 and coronary heart disease: prospective study and systematic review. Atherosclerosis 217:227–233

    PubMed  CAS  Google Scholar 

  • Jelusic M, Lukic IK, Tambic-Bukovac L, Dubravcic K, Malcic I, Rudan I, Batinic D (2007) Interleukin-18 as a mediator of systemic juvenile idiopathic arthritis. Clin Rheumatol 26:1332–1334

    PubMed  Google Scholar 

  • Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MJ (2011) Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol 187:6143–6156

    PubMed  CAS  Google Scholar 

  • Kampfer H, Muhl H, Manderscheid M, Kalina U, Kauschat D, Pfeilschifter J, Frank S (2000) Regulation of interleukin-18 (IL-18) expression in keratinocytes (HaCaT): implications for early wound healing. Eur Cytokine Netw 11:626–633

    PubMed  CAS  Google Scholar 

  • Kang MJ, Choi JM, Kim BH, Lee CM, Cho WK, Choe G, Kim DH, Lee CG, Elias JA (2012) IL-18 induces emphysema and airway and vascular remodeling via IFN-gamma, IL-17A, and IL-13. Am J Respir Crit Care Med 185:1205–1217

    PubMed  CAS  Google Scholar 

  • Kanneganti TD (2010) Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 10:688–698

    PubMed  CAS  Google Scholar 

  • Kastbom A, Johansson M, Verma D, Soderkvist P, Rantapaa-Dahlqvist S (2010) CARD8 p.C10X polymorphism is associated with inflammatory activity in early rheumatoid arthritis. Ann Rheum Dis 69:723–726

    PubMed  CAS  Google Scholar 

  • Kawashima M, Miossec P (2003) Heterogeneity of response of rheumatoid synovium cell subsets to interleukin-18 in relation to differential interleukin-18 receptor expression. Arthritis Rheum 48:631–637

    PubMed  CAS  Google Scholar 

  • Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    PubMed  CAS  Google Scholar 

  • Kolinska J, Lisa V, Clark JA, Kozakova H, Zakostelecka M, Khailova L, Sinkora M, Kitanovicova A, Dvorak B (2008) Constitutive expression of IL-18 and IL-18R in differentiated IEC-6 cells: effect of TNF-alpha and IFN-gamma treatment. J Interferon Cytokine Res 28:287–296

    PubMed  CAS  Google Scholar 

  • Kolly L, Busso N, Palmer G, Talabot-Ayer D, Chobaz V, So A (2010) Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology 129:178–185

    PubMed  CAS  Google Scholar 

  • Kumar S, Hanning CR, Brigham-Burke MR, Rieman DJ, Lehr R, Khandekar S, Kirkpatrick RB, Scott GF, Lee JC, Lynch FJ et al (2002) Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 18:61–71

    PubMed  CAS  Google Scholar 

  • Kurowska-Stolarska M, Hueber A, Stolarski B, McInnes IB (2011) Interleukin-33: a novel mediator with a role in distinct disease pathologies. J Intern Med 269:29–35

    PubMed  CAS  Google Scholar 

  • Lamkanfi M, Dixit VM (2011) Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol 187:597–602

    PubMed  CAS  Google Scholar 

  • Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28:137–161

    PubMed  CAS  Google Scholar 

  • Lee Y, Schulte DJ, Shimada K, Chen S, Crother TR, Chiba N, Fishbein MC, Lehman TJ, Arditi M (2012) Interleukin-1beta is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation 125:1542–1550

    PubMed  CAS  Google Scholar 

  • Lewis EC, Dinarello CA (2006) Responses of IL-18- and IL-18 receptor-deficient pancreatic islets with convergence of positive and negative signals for the IL-18 receptor. Proc Natl Acad Sci USA 103:16852–16857

    PubMed  CAS  Google Scholar 

  • Li W, Kashiwamura S, Ueda H, Sekiyama A, Okamura H (2007) Protection of CD8+ T cells from activation-induced cell death by IL-18. J Leukoc Biol 82:142–151

    PubMed  CAS  Google Scholar 

  • Li W, Kubo S, Okuda A, Yamamoto H, Ueda H, Tanaka T, Nakamura H, Yamanishi H, Terada N, Okamura H (2010) Effect of IL-18 on expansion of gammadelta T cells stimulated by zoledronate and IL-2. J Immunother 33:287–296

    PubMed  CAS  Google Scholar 

  • Lopetuso LR, Scaldaferri F, Pizarro TT (2012) Emerging role of the interleukin (IL)-33/ST2 axis in gut mucosal wound healing and fibrosis. Fibrogenesis Tissue Repair 5:18

    PubMed  CAS  Google Scholar 

  • Ludwiczek O, Kaser A, Novick D, Dinarello CA, Rubinstein M, Tilg H (2005) Elevated systemic levels of free interleukin-18 (IL-18) in patients with Crohn’s disease. Eur Cytokine Netw 16:27–33

    PubMed  CAS  Google Scholar 

  • Lukens JR, Gross JM, Kanneganti TD (2012) IL-1 family cytokines trigger sterile inflammatory disease. Front Immunol 3:315

    PubMed  Google Scholar 

  • Luthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, Brumatti G, Taylor RC, Kersse K, Vandenabeele P et al (2009) Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31:84–98

    PubMed  CAS  Google Scholar 

  • Majima T, Ichikura T, Chochi K, Kawabata T, Tsujimoto H, Sugasawa H, Kuranaga N, Takayama E, Kinoshita M, Hiraide H et al (2006) Exploitation of interleukin-18 by gastric cancers for their growth and evasion of host immunity. Int J Cancer 118:388–395

    PubMed  CAS  Google Scholar 

  • Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A (2001) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104:1598–1603

    PubMed  CAS  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    PubMed  CAS  Google Scholar 

  • Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    PubMed  CAS  Google Scholar 

  • Maslanik T, Mahaffey L, Tannura K, Beninson L, Greenwood BN, Fleshner M (2013) The inflammasome and danger associated molecular patterns (DAMPs) are implicated in cytokine and chemokine responses following stressor exposure. Brain Behav Immun 28:54–62

    PubMed  CAS  Google Scholar 

  • Matsunaga H, Hokari R, Ueda T, Kurihara C, Hozumi H, Higashiyama M, Okada Y, Watanabe C, Komoto S, Nakamura M et al (2011) Physiological stress exacerbates murine colitis by enhancing proinflammatory cytokine expression that is dependent on IL-18. Am J Physiol Gastrointest Liver Physiol 301:G555–G564

    PubMed  CAS  Google Scholar 

  • Menu P, Vince JE (2011) The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 166:1–15

    PubMed  CAS  Google Scholar 

  • Menu P, Pellegrin M, Aubert JF, Bouzourene K, Tardivel A, Mazzolai L, Tschopp J (2011) Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis 2:e137

    PubMed  CAS  Google Scholar 

  • Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243:206–214

    PubMed  CAS  Google Scholar 

  • Min CK, Maeda Y, Lowler K, Liu C, Clouthier S, Lofthus D, Weisiger E, Ferrara JL, Reddy P (2004) Paradoxical effects of interleukin-18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation. Blood 104:3393–3399

    PubMed  CAS  Google Scholar 

  • Munoz-Pinedo C (2012) Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense. Adv Exp Med Biol 738:124–143

    PubMed  CAS  Google Scholar 

  • Nakamura H, Komatsu K, Ayaki M, Kawamoto S, Murakami M, Uoshima N, Yagi T, Hasegawa T, Yasumi M, Karasuno T et al (2000) Serum levels of soluble IL-2 receptor, IL-12, IL-18, and IFN-gamma in patients with acute graft-versus-host disease after allogeneic bone marrow transplantation. J Allergy Clin Immunol 106:S45–S50

    PubMed  CAS  Google Scholar 

  • Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001) Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 19:423–474

    PubMed  CAS  Google Scholar 

  • Neumann D, Lienenklaus S, Rosati O, Martin MU (2002) IL-1beta-induced phosphorylation of PKB/Akt depends on the presence of IRAK-1. Eur J Immunol 32:3689–3698

    PubMed  CAS  Google Scholar 

  • Nishida K, Kamizato M, Kawai T, Masuda K, Takeo K, Teshima-Kondo S, Tanahashi T, Rokutan K (2009) Interleukin-18 is a crucial determinant of vulnerability of the mouse rectum to psychosocial stress. FASEB J 23:1797–1805

    PubMed  CAS  Google Scholar 

  • Nold-Petry CA, Nold MF, Nielsen JW, Bustamante A, Zepp JA, Storm KA, Hong JW, Kim SH, Dinarello CA (2009) Increased cytokine production in interleukin-18 receptor alpha-deficient cells is associated with dysregulation of suppressors of cytokine signaling. J Biol Chem 284:25900–25911

    PubMed  CAS  Google Scholar 

  • Nozaki Y, Kinoshita K, Yano T, Asato K, Shiga T, Hino S, Niki K, Nagare Y, Kishimoto K, Shimazu H et al (2012) Signaling through the interleukin-18 receptor alpha attenuates inflammation in cisplatin-induced acute kidney injury. Kidney Int 82:892–902

    PubMed  CAS  Google Scholar 

  • O’Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18

    PubMed  Google Scholar 

  • Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K et al (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378:88–91

    PubMed  CAS  Google Scholar 

  • Omoto Y, Tokime K, Yamanaka K, Habe K, Morioka T, Kurokawa I, Tsutsui H, Yamanishi K, Nakanishi K, Mizutani H (2006) Human mast cell chymase cleaves pro-IL-18 and generates a novel and biologically active IL-18 fragment. J Immunol 177:8315–8319

    PubMed  CAS  Google Scholar 

  • Omoto Y, Yamanaka K, Tokime K, Kitano S, Kakeda M, Akeda T, Kurokawa I, Gabazza EC, Tsutsui H, Katayama N et al (2010) Granzyme B is a novel interleukin-18 converting enzyme. J Dermatol Sci 59:129–135

    PubMed  CAS  Google Scholar 

  • Pan G, Risser P, Mao W, Baldwin DT, Zhong AW, Filvaroff E, Yansura D, Lewis L, Eigenbrot C, Henzel WJ, Vandlen R (2001) IL-1H, an interleukin 1-related protein that binds IL-18 receptor/IL-1Rrp. Cytokine 13:1–7

    PubMed  CAS  Google Scholar 

  • Park S, Cheon S, Cho D (2007) The dual effects of interleukin-18 in tumor progression. Cell Mol Immunol 4:329–335

    PubMed  CAS  Google Scholar 

  • Plater-Zyberk C, Joosten LA, Helsen MM, Sattonnet-Roche P, Siegfried C, Alouani S, van De Loo FA, Graber P, Aloni S, Cirillo R et al (2001) Therapeutic effect of neutralizing endogenous IL-18 activity in the collagen-induced model of arthritis. J Clin Invest 108:1825–1832

    PubMed  CAS  Google Scholar 

  • Platis A, Yu Q, Moore D, Khojeini E, Tsau P, Larson D (2008) The effect of daily administration of IL-18 on cardiac structure and function. Perfusion 23:237–242

    PubMed  CAS  Google Scholar 

  • Puren AJ, Fantuzzi G, Dinarello CA (1999) Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA 96:2256–2261

    PubMed  CAS  Google Scholar 

  • Qiao H, Sonoda KH, Ikeda Y, Yoshimura T, Hijioka K, Jo YJ, Sassa Y, Tsutsumi-Miyahara C, Hata Y, Akira S, Ishibashi T (2007) Interleukin-18 regulates pathological intraocular neovascularization. J Leukoc Biol 81:1012–1021

    PubMed  CAS  Google Scholar 

  • Rathinam VA, Fitzgerald KA (2010) Inflammasomes and anti-viral immunity. J Clin Immunol 30:632–637

    PubMed  CAS  Google Scholar 

  • Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150:606–619

    PubMed  CAS  Google Scholar 

  • Reddy P, Teshima T, Kukuruga M, Ordemann R, Liu C, Lowler K, Ferrara JL (2001) Interleukin-18 regulates acute graft-versus-host disease by enhancing Fas-mediated donor T cell apoptosis. J Exp Med 194:1433–1440

    PubMed  CAS  Google Scholar 

  • Rothe H, Kolb H (1998) The APC1 concept of type I diabetes. Autoimmunity 27:179–184

    PubMed  CAS  Google Scholar 

  • Sahoo M, Ceballos-Olvera I, del Barrio L, Re F (2011) Role of the inflammasome, IL-1beta, and IL-18 in bacterial infections. Scientific World Journal 11:2037–2050

    PubMed  CAS  Google Scholar 

  • Sakai A, Sugawara Y, Kuroishi T, Sasano T, Sugawara S (2008) Identification of IL-18 and Th17 cells in salivary glands of patients with Sjogren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol 181:2898–2906

    PubMed  CAS  Google Scholar 

  • Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, Wang E, Ma W, Haines D, O’Huigin C et al (2010) MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 207:1625–1636

    PubMed  CAS  Google Scholar 

  • Salvati VM, MacDonald TT, Bajaj-Elliott M, Borrelli M, Staiano A, Auricchio S, Troncone R, Monteleone G (2002) Interleukin 18 and associated markers of T helper cell type 1 activity in coeliac disease. Gut 50:186–190

    PubMed  CAS  Google Scholar 

  • Santos LL, Milenkovski GP, Hall PH, Leech M, Sharma L, Takeda K, Akira S, Kitching AR, Morand EF (2006) IL-18 is redundant in T-cell responses and in joint inflammation in antigen-induced arthritis. Immunol Cell Biol 84:166–173

    PubMed  CAS  Google Scholar 

  • Schmidt RL, Lenz LL (2012) Distinct licensing of IL-18 and IL-1beta secretion in response to NLRP3 inflammasome activation. PLoS One 7:e45186

    PubMed  CAS  Google Scholar 

  • Shaw PJ, McDermott MF, Kanneganti TD (2011) Inflammasomes and autoimmunity. Trends Mol Med 17:57–64

    PubMed  CAS  Google Scholar 

  • Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16:751–762

    PubMed  CAS  Google Scholar 

  • Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89–102

    PubMed  CAS  Google Scholar 

  • Spalletta G, Bossu P, Ciaramella A, Bria P, Caltagirone C, Robinson RG (2006) The etiology of poststroke depression: a review of the literature and a new hypothesis involving inflammatory cytokines. Mol Psychiatry 11:984–991

    PubMed  CAS  Google Scholar 

  • Srivastava S, Salim N, Robertson MJ (2010) Interleukin-18: biology and role in the immunotherapy of cancer. Curr Med Chem 17:3353–3357

    PubMed  CAS  Google Scholar 

  • Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    PubMed  CAS  Google Scholar 

  • Sugawara S, Uehara A, Nochi T, Yamaguchi T, Ueda H, Sugiyama A, Hanzawa K, Kumagai K, Okamura H, Takada H (2001) Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol 167:6568–6575

    PubMed  CAS  Google Scholar 

  • Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203:1685–1691

    PubMed  CAS  Google Scholar 

  • Takahashi M (2011) Role of the inflammasome in myocardial infarction. Trends Cardiovasc Med 21:37–41

    PubMed  CAS  Google Scholar 

  • Thompson SR, Humphries SE (2007) Interleukin-18 genetics and inflammatory disease susceptibility. Genes Immun 8:91–99

    PubMed  CAS  Google Scholar 

  • Troseid M, Seljeflot I, Hjerkinn EM, Arnesen H (2009) Interleukin-18 is a strong predictor of cardiovascular events in elderly men with the metabolic syndrome: synergistic effect of inflammation and hyperglycemia. Diabetes Care 32:486–492

    PubMed  Google Scholar 

  • Troseid M, Seljeflot I, Arnesen H (2010) The role of interleukin-18 in the metabolic syndrome. Cardiovasc Diabetol 9:11

    PubMed  Google Scholar 

  • Tsutsui H, Kayagaki N, Kuida K, Nakano H, Hayashi N, Takeda K, Matsui K, Kashiwamura S, Hada T, Akira S et al (1999) Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice. Immunity 11:359–367

    PubMed  CAS  Google Scholar 

  • Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Hida S, Sagara J, Taniguchi S, Takahashi M (2012) Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun 425:162–168

    PubMed  CAS  Google Scholar 

  • Valente AJ, Yoshida T, Murthy SN, Sakamuri SS, Katsuyama M, Clark RA, Delafontaine P, Chandrasekar B (2012) Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18. Am J Physiol Heart Circ Physiol 303:H282–H296

    PubMed  CAS  Google Scholar 

  • van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA (2011) Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol 32:110–116

    PubMed  Google Scholar 

  • Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188

    PubMed  CAS  Google Scholar 

  • Vidal-Vanaclocha F, Mendoza L, Telleria N, Salado C, Valcarcel M, Gallot N, Carrascal T, Egilegor E, Beaskoetxea J, Dinarello CA (2006) Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev 25:417–434

    PubMed  CAS  Google Scholar 

  • Wiercinska-Drapalo A, Flisiak R, Jaroszewicz J, Prokopowicz D (2005) Plasma interleukin-18 reflects severity of ulcerative colitis. World J Gastroenterol 11:605–608

    PubMed  Google Scholar 

  • Xing SS, Tan HW, Bi XP, Zhong M, Zhang Y, Zhang W (2008) Felodipine reduces cardiac expression of IL-18 and perivascular fibrosis in fructose-fed rats. Mol Med 14:395–402

    PubMed  CAS  Google Scholar 

  • Yamaoka-Tojo M, Tojo T, Wakaume K, Kameda R, Nemoto S, Takahira N, Masuda T, Izumi T (2011) Circulating interleukin-18: a specific biomarker for atherosclerosis-prone patients with metabolic syndrome. Nutr Metab (Lond) 8:3

    CAS  Google Scholar 

  • Yokota K, Miyazaki T, Hemmatazad H, Gay RE, Kolling C, Fearon U, Suzuki H, Mimura T, Gay S, Ospelt C (2012) The pattern-recognition receptor nucleotide-binding oligomerization domain – containing protein 1 promotes production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 64:1329–1337

    PubMed  CAS  Google Scholar 

  • Yoo JK, Kwon H, Khil LY, Zhang L, Jun HS, Yoon JW (2005) IL-18 induces monocyte chemotactic protein-1 production in macrophages through the phosphatidylinositol 3-kinase/Akt and MEK/ERK1/2 pathways. J Immunol 175:8280–8286

    PubMed  CAS  Google Scholar 

  • Zheng JN, Pei DS, Mao LJ, Liu XY, Sun FH, Zhang BF, Liu YQ, Liu JJ, Li W, Han D (2010) Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis. Cancer Gene Ther 17:28–36

    PubMed  CAS  Google Scholar 

  • Zilverschoon GR, Tack CJ, Joosten LA, Kullberg BJ, van der Meer JW, Netea MG (2008) Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus. Int J Obes (Lond) 32:1407–1414

    CAS  Google Scholar 

  • Zirlik A, Abdullah SM, Gerdes N, MacFarlane L, Schonbeck U, Khera A, McGuire DK, Vega GL, Grundy S, Libby P, de Lemos JA (2007) Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: results from the Dallas Heart Study. Arterioscler Thromb Vasc Biol 27:2043–2049

    PubMed  CAS  Google Scholar 

  • Zitvogel L, Kepp O, Galluzzi L, Kroemer G (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 13:343–351

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruki Okamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Li, W., Tanaka, Y., Okamura, H. (2014). IL-18. In: Yoshimoto, T., Yoshimoto, T. (eds) Cytokine Frontiers. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54442-5_4

Download citation

Publish with us

Policies and ethics