Skip to main content

The Invariance Principle and Income-Wealth Conservation Laws

  • Chapter
  • First Online:
Symmetry and Economic Invariance

Part of the book series: Advances in Japanese Business and Economics ((AJBE,volume 1))

  • 672 Accesses

Abstract

In the early part of the nineteenth century William Rowan Hamilton discovered a principle which can be generalized to encompass many areas of physics, engineering and applied mathematics. Hamilton’s principle roughly states that the evolution in time of a dynamic system takes place in such a manner that integral of the difference between the kinetic and potential energies for the system is stationary. If the “action” integral is free of the time variable, the sum of the kinetic and potential energies, the Hamiltonian, is constant—the conservation law of the total energy.

This chapter is a revised and expanded version of Sato (1985) and the author wishes to express his appreciation to Paul A. Samuelson, William A. Barnett, Hal R. Varian, Gilbert Suzawa, Takayuki Nôno, Fumitake Mimura, and Shigeru Maeda for their helpful comments on an earlier version of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Her paper has recently been translated into English by Tavel, who also supplies a brief motivation and historical sketch (see Noether (1918)).

  2. 2.

    We adopt the so-called Einstein summation convention (Young (1978, pp. 333–334)). When a lower case Latin index such as j, h, k,  appears twice in a term, summation over that index is implied, the range of summation being 1, , n. For example, a i x i means \(\sum _{i=1}^{n}{a}^{i}{x}^{i}\).

  3. 3.

    In many cases the transformations (8.10) may be Lie groups and, hence, (8.13) may be the infinitesimal transformations of a group. However, to study Noether’s invariance principle the group property is not necessary. We simply assume the existence of the infinitesimal transformations.

References

  • Bessel-Hagen, E. (1921). Über die Erhaltungssätze der Elektrodynamik. Mathematische Annalen, 84, 258–276.

    Article  Google Scholar 

  • Caton, C., & Shell, K. (1971). An exercise in the theory of heterogeneous capital accumulation. Review of Economic Studies, 32, 233–240.

    Google Scholar 

  • Gelfand, I.M., & Fomin, S.V. (1963). Calculus of variations (translated from the Russian by Silverman, R.A.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Kataoka, H. (1983). On the local conservation laws in the von Neumann model. In R. Sato, & M.J. Beckmann (Eds.), Technology, organization and economic structure: lecture notes in economics and mathematical systems, vol. 210 (pp. 253–260).

    Google Scholar 

  • Kemp, M.C., & Long, N.V. (1982). On the evaluation of social income in a dynamic economy. In G.R. Feiwel (Ed.), Samuelson and neoclassical economics. Boston: Kluwer-Nijhoff.

    Google Scholar 

  • Klein, F. (1918). Über die Differentialgesetze für die Erhaltung von Impuls und Energie in der Einsteinschen Gravitationstheorie. Nachr. Akad. Wiss. Göttingen, Math-Phys. Kl. II, 171–189.

    Google Scholar 

  • Lie, S. (1891). In G. Scheffers (Ed.), Vorlesungen liber Differentialgleichungen, mit bekannten infinitesimalen Transformationen. Leipzig: Teubner. Reprinted (1967) New York: Chelsea.

    Google Scholar 

  • Liviatan, N., & Samuelson, P.A. (1969). Notes on turnpikes: stable and unstable. Journal of Economic Theory, 1, 454–475.

    Article  Google Scholar 

  • Logan, J.D. (1977). Invariant variational principles. Mathematics in science and engineering, vol. 138. New York: Academic Press.

    Google Scholar 

  • Lovelock, D., & Rund, H. (1975). Tensors, differential forms and variational principles. New York: Wiley.

    Google Scholar 

  • Moser, J. (1979). Hidden symmetries in dynamical systems. American Scientists, 67, 689–695.

    Google Scholar 

  • Noether, E. (1918). Invariante Variationsprobleme. Nachr. Akad. Wiss. Göttingen, Math-Phys. KL II, 235–257. Translated by Tavel, M.A. (1971). Invariant variation problems. Transport Theory and Statistical Physics, 1, 186–207.

    Google Scholar 

  • Nôno, T. (1968). On the symmetry groups of simple materials: applications of the theory of Lie groups. Journal of Mathematical Analysis and Applications, 24, 110–135.

    Article  Google Scholar 

  • Nôno, T., & Mimura, F. (1975/1976/1977/1978). Dynamic symmetries I/III/IV/V. Bulletin of Fukuoka University of Education, 125/126/127/128.

    Google Scholar 

  • Ramsey, F. (1928). A mathematical theory of saving. Economic Journal, 38, 543–559.

    Article  Google Scholar 

  • Rund, H. (1966). The Hamilton–Jacobi theory in the calculus of variations. Princeton, NJ: Van Nostrand-Reinhold.

    Google Scholar 

  • Sagan, H. (1969). Introduction to the calculus of variations. New York: McGraw-Hill.

    Google Scholar 

  • Samuelson, P.A. (1970a). Law of conservation of the capital-output ratio: Proceedings of the National Academy of Sciences. Applied Mathematical Science, 67, 1477–1479.

    Google Scholar 

  • Samuelson, P.A. (1970b). Two conservation laws in theoretical economics. Cambridge, MA: MIT Department of Economics mimeo. Reprint (1990) In R. Sato, & R. Ramchandran (Eds.), Conservation laws and symmetry: applications to economics and finance (pp.57–70). Norwell, MA: Kluwer.

    Google Scholar 

  • Samuelson, P.A. (1976). Speeding up of time with age in recognition of life as fleeting. In A.M. Tang et al. (Eds.), Evolution, welfare, and time in economics: essays in honor of Nicholas Georgescu-Roegen. Lexington, MA: Lexington/Heath Books.

    Google Scholar 

  • Samuelson, P.A. (1982). Variations on capital-output conservation laws. Cambrige, MA: MIT Mimeo.

    Google Scholar 

  • Sato, R. (1981). Theory of technical change and economic invariance: application of Lie groups. New York: Academic Press. Updated edition (1999) Cheltenham: Edward Elgar.

    Google Scholar 

  • Sato, R. (1982). Invariant principle and capital-output conservation laws. Providence, RI: Brown University working paper No. 82-8.

    Google Scholar 

  • Sato, R. (1985). The invariance principle and income-wealth conservation laws: application of Lie groups and related transformations. Journal of Econometrics, 30, 365–389.

    Article  Google Scholar 

  • Sato, R. (2002). Optimal economic growth: test of income/wealth conservation laws. Macroeconomic Dynamics, 6, 548–572.

    Article  Google Scholar 

  • Sato, R. (2006). Biased technical change and economic conservation laws. Springer.

    Google Scholar 

  • Sato, R., & Fujii, M. (2006). Evaluating corporate performance: empirical tests of a conservation law. Japan and the World Economy, 18, 158–168.

    Article  Google Scholar 

  • Sato, R., Nôno, T., & Mimura, F. (1984). Hidden symmetries: Lie groups and economic conservation laws, essay in honor of Martin Beckmann. In H. Hauptman, W. Krelle, & K.C. Mosler (Eds.), Operations research and economic theory. Springer.

    Google Scholar 

  • Weitzman, M.L. (1976). On the welfare significance of national product in a dynamic economy. Quarterly Journal of Economics, 90, 156–162.

    Article  Google Scholar 

  • Whittaker, E.T. (1937). A treatise on the analytical dynamics of particles and rigid bodies. Cambridge: Cambridge University Press, 4th edn. Reprinted (1944), New York: Dover.

    Google Scholar 

  • Young, E.C. (1978), Vector and tensor analysis. New York:Decker.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Consider the variational integral

$$\displaystyle\begin{array}{rcl} & & J(x) =\int _{ a}^{b}L(t,x(t),\dot{x}(t))\,dt \\ & & (x(t) = ({x}^{1}(t),\ldots,{x}^{n}(t)),\quad \dot{x}(t) = (\dot{{x}}^{1}(t),\ldots,\dot{{x}}^{n}(t))).{}\end{array}$$
(8.62)

Also consider r-parameter transformations

$$\displaystyle\begin{array}{rcl} T: \overline{t} =\phi (t,x;\varepsilon ),\quad \varepsilon = {(\varepsilon }^{1},\ldots {,\varepsilon }^{n}),\quad {\overline{x}}^{i} {=\psi }^{i}(t,x;\varepsilon )\quad (i = 1,\ldots,n).& &{}\end{array}$$
(8.63)

where

$$\displaystyle\begin{array}{rcl} \phi (t,x;0)\!& =& \!t, \\ {\psi }^{i}(t,x;0)\!& =& \!{x}^{i}.{}\end{array}$$
(8.64)

In addition, it is assumed that T does not change the end points (a, α) and (b, β) where

$$\displaystyle\begin{array}{rcl} \phi (a,x(a);\varepsilon )\!& =& \!a,\quad \phi (b,x(b);\varepsilon ) = b, \\ {\psi }^{i}(a,x(a);\varepsilon )\!& =& \!{\alpha }^{i},\quad {\psi }^{i}(b,x(b);\varepsilon ) ={\beta }^{i}.{}\end{array}$$
(8.65)

Let X s be the infinitesimal transformations for s = 1, , r, then we write X s as

$$\displaystyle\begin{array}{rcl} X_{s} =\tau _{s}(t,x) \frac{\partial } {\partial t} +\xi _{ s}^{i}(t,x) \frac{\partial } {\partial {x}^{i}} +\eta _{ s}^{i}(t,x,\dot{x}) \frac{\partial } {\partial \dot{{x}}^{i}}& &{}\end{array}$$
(8.66)

where

$$\displaystyle\begin{array}{rcl} \tau _{s}(t,x)\!& =& \! \frac{\partial \phi } {{\partial \varepsilon }^{s}}(t,x;0),\quad \xi _{s}^{i}(t,x) = \frac{{\partial \psi }^{i}} {{\partial \varepsilon }^{s}}(t,x;0), \\ \eta _{s}^{i}(t,x,\dot{x})\!& =& \!\frac{d\xi _{s}^{i}} {dt} - {x}^{i}\frac{d\tau _{s}} {dt} {}\end{array}$$
(8.67)

and (8.65) obeys

$$\displaystyle\begin{array}{rcl} \tau _{s}(a,x(a))\!& =& \!\tau _{s}(b,x(b)) = 0, \\ \xi _{s}^{i}(a,x(a))\!& =& \!\xi _{ s}^{i}(b,x(b)) = 0.{}\end{array}$$
(8.68)

If (8.62) is invariant under (8.63), we have

$$\displaystyle\begin{array}{rcl} \int _{a}^{b}X_{ s}(L\,dt) = 0.& &{}\end{array}$$
(8.69)

Lemma 8.1.

For any τ s (t,x) and ξ s i (t,x), we have

$$\displaystyle\begin{array}{rcl} N_{s} = (\xi _{s}^{i} -\dot{ {x}}^{i}\tau _{ s})E_{i} + \frac{d\Omega _{s}} {dt} & &{}\end{array}$$
(8.70)

where

$$\displaystyle\begin{array}{rcl} N_{s}\!& =& \!\frac{\partial L} {\partial t} \tau _{s} + \frac{\partial L} {\partial {x}^{i}}\xi _{s}^{i} + \frac{\partial L} {\partial \dot{{x}}^{i}}{\Bigl (\frac{d\xi _{s}^{i}} {dt} -\dot{ {x}}^{i}\frac{d\tau _{s}} {dt}\Bigr )} + L\frac{d\tau _{s}} {dt}, {}\\ E_{i}\!& =& \!\mbox{ Euler\textendash Lagrange equation} = \frac{\partial L} {\partial {x}^{i}} - \frac{d} {dt}{\Bigl ( \frac{\partial L} {\partial \dot{{x}}^{i}}\Bigr )}, {}\\ \frac{d\Omega } {dt} \!& =& \! \frac{d} {dt}{\Bigl [{\Bigl (L -\dot{ {x}}^{i} \frac{\partial L} {\partial \dot{{x}}^{i}}\Bigr )}\tau _{s} + \frac{\partial L} {\partial \dot{{x}}^{i}}\xi _{s}^{i}\Bigr ]}. {}\\ \end{array}$$

Proof.

By differentiating \(\Omega _{s}\) with respect to t we have

$$\displaystyle\begin{array}{rcl} \frac{d\Omega _{s}} {dt} \!& =& \! \frac{d} {dt}{\Bigl [{\Bigl (L -\dot{ {x}}^{i} \frac{\partial L} {\partial \dot{{x}}^{i}}\Bigr )}\tau _{s} + \frac{\partial L} {\partial \dot{{x}}^{i}}\xi _{s}^{i}\Bigr ]} {}\\ \!& =& \!\frac{\partial L} {\partial t} \tau _{s} + \frac{\partial L} {\partial \dot{{x}}^{i}}{\Bigl (\frac{d\xi _{s}^{i}} {dt} -\dot{ {x}}^{i}\frac{d\tau _{s}} {dt}\Bigr )} + L\frac{d\tau _{s}} {dt} {}\\ & & \!+{x}^{i}\tau _{ s}{\Bigl [ \frac{\partial L} {\partial {x}^{i}} - \frac{d} {dt}{\Bigl ( \frac{\partial L} {\partial \dot{{x}}^{i}}\Bigr )}\Bigr ]} + \frac{d} {dt}{\Bigl ( \frac{\partial L} {\partial \dot{{x}}^{i}}\Bigr )}\xi _{s}^{i} {}\\ \!& =& \!N_{s} - (\xi _{s}^{i} -\dot{ {x}}^{i}\tau _{ s})E_{i}. {}\\ \end{array}$$

 □ 

When (8.62) is optimized, E i vanishes and (8.70) reduces to

$$\displaystyle\begin{array}{rcl} \frac{d\Omega _{s}} {dt} = N_{s}.& &{}\end{array}$$
(8.71)

There are two cases: (1) when N s  = 0 and N s ≠0. The conservation law when N s  = 0 is

$$\displaystyle\begin{array}{rcl} \frac{d\Omega _{s}} {dt} = 0\quad \mbox{ or}\quad \Omega _{s} = \mbox{ constant}.& &{}\end{array}$$
(8.72a)

When N s ≠0 and \(d\Phi /dt = N_{s}\), we have

$$\displaystyle\begin{array}{rcl} \frac{d(\Omega _{s} - \Phi _{s})} {dt} = 0\quad \mbox{ or}\quad \Omega _{s} - \Phi _{s} = \mbox{ constant}.& &{}\end{array}$$
(8.72b)

This is Noether’s invariance up to divergence.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Sato, R., Ramachandran, R.V. (2014). The Invariance Principle and Income-Wealth Conservation Laws. In: Symmetry and Economic Invariance. Advances in Japanese Business and Economics, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54430-2_8

Download citation

Publish with us

Policies and ethics