Skip to main content

Epigenetics in Endometriosis

  • Chapter
  • First Online:
Endometriosis

Abstract

There is accumulating evidence supporting the concept that endometriosis is a disease associated with an epigenetic disorder. Epigenetics is one of the most expanding fields in the current biomedical research. The word “epigenetics” refers to the study of mitotically and/or meiotically heritable changes in gene expression that occur without changes in the DNA sequence. The disruption of such changes (epigenetic aberration or disorder) underlies a wide variety of pathologies. Epigenetic regulation includes DNA methylation and histone modifications and is responsible for a number of gene transcriptions associated with chromatin modifications that distinguish the states of diseases. As an introduction, we summarize our findings of epigenetic disorder in endometriotic cells and then overview recent studies focused on DNA methylation in endometriosis. We describe our recent challenge and advanced studies from other laboratories using genome-wide (GW) analysis. Finally, we refer to environmental factors as a potential background of epigenetic disorder in endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    Article  CAS  PubMed  Google Scholar 

  3. Jones PA, Baylin BS. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17:330–9.

    Article  PubMed  Google Scholar 

  5. Li G, Reinberg D. Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev. 2011;21:175–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007;8:286–98.

    Article  CAS  PubMed  Google Scholar 

  7. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Guo S-W. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15:587–607.

    Article  CAS  PubMed  Google Scholar 

  9. Nasu K, Kawano Y, Tsukamoto Y, Takano M, Takai N, Li H, Furukawa Y, Abe W, Moriyama M, Narahara H. Aberrant DNA methylation status of endometriosis: epigenetics as the pathogenesis, biomarker and therapeutic target. J Obstet Gynaecol Res. 2011;37:683–95.

    Article  CAS  PubMed  Google Scholar 

  10. Dlugi AM, Miller JD, Knittle J. Lupron depot (leuprolide acetate for depot suspension) in the treatment of endometriosis: a randomized, placebo-controlled, double blind study. Fertil Steril. 1990;54:419–27.

    CAS  PubMed  Google Scholar 

  11. Shaw RW. An open randomized comparative study of the effect of goserelin depot and danazol in the treatment of endometriosis. Fertil Steril. 1992;58:265–72.

    CAS  PubMed  Google Scholar 

  12. Olive DL, Pritts EA. Treatment of endometriosis. N Engl J Med. 2001;345:266–75.

    Article  CAS  PubMed  Google Scholar 

  13. Bulun SE, Imir G, Utsunomiya H, Thung S, Gurates B, Tamura M, Lin Z. Aromatase in endometriosis and leiomyomata. J Steroid Biochem Mol Biol. 2005;95:57–62.

    Article  CAS  PubMed  Google Scholar 

  14. Izawa M, Harada T, Ohama Y, Takenaka Y, Taniguchi F, Terakawa N. An epigenetic disorder may cause aberrant expression of aromatase gene in endometriotic stromal cells. Fertil Steril. 2008;89:1390–6.

    Article  CAS  PubMed  Google Scholar 

  15. Noble LS, Simpson ER, Johns A, Bulun SE. Aromatase expression in endometriosis. J Clin Endocrinol Metab. 1996;81:174–9.

    CAS  PubMed  Google Scholar 

  16. Kitawaki J, Noguchi T, Amatsu T, Maeda K, Tsukamoto K, Yamamoto T, Fushiki S, Osawa Y, Honjo H. Expression of aromatase cytochrome P450 protein and messenger ribonucleic acid in human endometriotic and adenomyotic tissues but not in normal endometrium. Biol Reprod. 1997;57:514–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bulun SE, Zeitoun K, Takayama K, Noble L, Michael D, Simpson E, Johns A, Putman M, Sasano H. Estrogen production in endometriosis and use of aromatase inhibitors to treat endometriosis. Endocr Relat Cancer. 1999;6:293–301.

    Article  CAS  PubMed  Google Scholar 

  18. Simpson ER, Michael MQ, Agarwal VR, Hinshelwood MM, Bulun SE, Zhao Y. Expression of the CYP19 (aromatase) gene: An unusual case of alternative promoter usage. FASEB J. 1997;11:29–36.

    CAS  PubMed  Google Scholar 

  19. Izawa M, Taniguchi F, Uegaki T, Takai E, Iwabe T, Terakawa N, Harada T. Demethylation of a nonpromoter cytosine-phosphate-guanine island in the aromatase gene may cause the aberrant up-regulation in endometriotic tissues. Fertil Steril. 2011;95:33–9.

    Article  CAS  PubMed  Google Scholar 

  20. Chang EC, Charn TH, Park S-H, Helferich WG, Komm B, Katzenellenbogen JA, Katzenellenbogen BS. Estrogen Receptors alpha and beta as determinants of gene expression: influence of ligand, dose, and chromatin binding. Mol Endocrinol. 2008;22:1032–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Charn TH, Liu T-B, Chang EC, Lee YK, Katzenellenbogen JA, Katznellenbogen BS. Genome-wide dynamics of chromatin binding of estrogen receptors α and β:mutual restriction and competitive site selection. Mol Endocrinol. 2010;24:47–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Fujimoto J, Hirose R, Sakaguchi H, Tamaya T. Expression of oestrogen receptor-alpha and -beta in ovarian endometriomata. Mol Hum Reprod. 1999;5:742–7.

    Article  CAS  PubMed  Google Scholar 

  23. Brandenberger AW, Lebovic DI, Tee MK, Ryan IP, Tseng JF, Jaffe RB, Taylor RN. Oestrogen receptor (ER)-alpha and ER-beta isoforms in normal endometrial and endometriosis-derived stromal cells. Mol Hum Reprod. 1999;5:651–5.

    Article  CAS  PubMed  Google Scholar 

  24. Xue Q, Lin Z, Cheng YH, Huang CC, Marsh E, Yin P, Milad MP, Confino E, Reierstad S, Innes J, Bulun SE. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 2007;77:681–7.

    Article  CAS  PubMed  Google Scholar 

  25. Trukhacheva E, Lin Z, Reierstad S, Cheng YH, Milad M, Bulun SE. Estrogen receptor (ER) beta regulates ERalpha expression in stromal cells derived from ovarian endometriosis. J Clin Endocrinol Metab. 2009;94:615–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, Martin R, Utsunomiya H, Thung S, Gurates B, Tamura M, Langoi D, Deb S. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev. 2005;57:359–83.

    Article  CAS  PubMed  Google Scholar 

  27. Attar E, Bulun SE. Aromatase and other steroidogenic genes in endometriosis: Translational aspects. Hum Reprod Update. 2006;12:49–56.

    Article  CAS  PubMed  Google Scholar 

  28. Brosens JJ, Hayashi N, White JO. Progesterone receptor regulates decidual prolactin expression in differentiating human endometrial stromal cells. Endocrinology. 1999;140:4809–20.

    CAS  PubMed  Google Scholar 

  29. Fazleabas AT, Brudney A, Chai D, Langoi D, Bulun SE. Steroid receptor and aromatase expression in baboon endometriotic lesions. Fertil Steril. 2003;80:820–7.

    Article  PubMed  Google Scholar 

  30. Bulun SE, Cheng YH, Yin P, Imir G, Utsunomiya H, Attar E, Innes J, Kim JJ. P: Progesterone resistance in endometriosis: Link to failure to metabolize estradiol. Mol Cell Endocrinol. 2006;248:94–103.

    Article  CAS  PubMed  Google Scholar 

  31. Lessey BA, Metzger DA, Haney AF, McCarty Jr KS. Immunohistochemical analysis of estrogen and progesterone receptors in endometriosis: Comparison with normal endometrium during the menstrual cycle and the effect of medical therapy. Fertil Steril. 1989;51:409–15.

    CAS  PubMed  Google Scholar 

  32. Attia GR, Zeitoun K, Edwards D, Johns A, Carr BR, Bulun SE. Progesterone receptor isoform A but not B is expressed in endometriosis. J Clin Endocrinol Metab. 2000;85:2897–902.

    CAS  PubMed  Google Scholar 

  33. Lee B, Du H, Taylor HS. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol Reprod. 2009;80:79–85.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Vercellini P, Cortesi I, Crosignani PG. Progestins for symptomatic endometriosis: A critical analysis of the evidence. Fertil Steril. 1997;68:393–401.

    Article  CAS  PubMed  Google Scholar 

  35. Wu Y, Strawn E, Basir Z, Halverson G, Guo S-W. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics. 2006;1:106–11.

    Article  PubMed  Google Scholar 

  36. Wu Y, Starzinski-Powitz A, Guo S-W. Prolonged stimulation with tumor necrosis factor-alpha induced partial methylation at PR-B promoter in immortalized epithelial-like endometriotic cells. Fertil Steril. 2008;90:234–7.

    Article  PubMed  Google Scholar 

  37. Wu Y, Shi X, Guo S-W. The knockdown of progesterone receptor isoform B (PR-B) promotes proliferation in immortalized endometrial stromal cells. Fertil Steril. 2008;90:1320–3.

    Article  CAS  PubMed  Google Scholar 

  38. Rice DA, Mouw AR, Bogerd AM, Parker KL. A shared promoter element regulates the expression of three steroidogenic enzymes. Mol Endocrinol. 1991;5:1552–61.

    Article  CAS  PubMed  Google Scholar 

  39. Morohashi K, Honda S, Inomata Y, Handa H, Omura T. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450 s. J Biol Chem. 1992;267:17913–9.

    CAS  PubMed  Google Scholar 

  40. Zeitoun K, Takayama K, Michael MD, Bulun SE. Stimulation of aromatase P450 promoter (II) activity in endometriosis and its inhibition in endometrium are regulated by competitive binding of steroidogenic factor-1 and chicken ovalbumin upstream promoter transcription factor to the same cis-acting element. Mol Endocrinol. 1999;13:239–53.

    Article  CAS  PubMed  Google Scholar 

  41. Xue Q, Lin Z, Yin P, Milad MP, Chen YH, Confino E, Reierstad S, Bulun SE. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5′ CpG island in endometriosis. J Clin Endocrinol Metab. 2007;92:3261–7.

    Article  CAS  PubMed  Google Scholar 

  42. Utsunomiya H, Cheng YH, Lin Z, Reierstad S, Yin P, Attar E, Que Q, Imir G, Thung S, Trukhacheva E, Suzuki T, Sasano H, Kim JJ, Yaegashi N, Bulun SE. Upstream stimulatory factor-2 regulates steroidogenic factor-1 expression in endometriosis. Mol Endocrinol. 2008;22:904–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Löchner D, Birchmeier W. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113:173–85.

    Article  CAS  PubMed  Google Scholar 

  44. Starzinski-Powitz A, Gaetje R, Zeitvogel A, Kotzian S, Handrow-Metzmacher H, Herrmann G, Fanning E, Baumann R. Tracing cellular and molecular mechanisms involved in endometriosis. Hum Reprod Update. 1998;4:724–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wu Y, Starzinski-Powitz A, Guo S-W. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells. Reprod Sci. 2007;14:374–82.

    Article  CAS  PubMed  Google Scholar 

  46. Bornman DM, Mathew S, Alsruhe J, Herman JG, Gabrielson E. Methylation of the E-cadherin gene in bladder neoplasia and in normal urothelial epithelium from elderly individuals. Am J Pathol. 2001;159:831–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Taylor HS, Bagot C, Kardana A, Olive D, Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod. 1999;14:1328–31.

    Article  CAS  PubMed  Google Scholar 

  48. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101:1379–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gui Y, Zhang J, Yuan L, Lessey BA. Regulation of HOXA-10 is and its expression in normal and abnormal endometrium. Mol Hum Reprod. 1999;5:866–73.

    Article  CAS  PubMed  Google Scholar 

  50. Wu Y, Halverson G, Basir Z, Strawn E, Yan P, Guo S-W. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am J Obstet Gynecol. 2005;193:371–80.

    Article  CAS  PubMed  Google Scholar 

  51. Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet. 2010;11:191–203.

    Article  CAS  PubMed  Google Scholar 

  52. Arimoto T, Katagiri T, Oda K, Tsunoda T, Yasugi T, Osuga Y, Yoshikawa H, Nishii O, Yano T, Taketani Y, Nakamura Y. Genome-wide cDNA microarray analysis of gene-expression profiles involved in ovarian endometriosis. Int J Oncol. 2003;22:551–60.

    CAS  PubMed  Google Scholar 

  53. Matsuzaki S, Canis M, Vaurs-Barriere C, Pouly JL, Boespflug-Tanguy O, Penault-Llorca F, Dechelotte P, Dastugue B, Okamura K, Mage G. DNA microarray analysis of gene expression profiles in deep endometriosis using laser capture microdissection. Mol Hum Reprod. 2004;10:719–28.

    Article  CAS  PubMed  Google Scholar 

  54. Borghese B, Barbaux S, Mondon F, Santulli P, Pierre G, Chapron G, Vaimin D. Genome-wide profiling of methylated promoters in endometriosis reveals a subtelomeric location of hypermethylation. Mol Endocrinol. 2010;24:1872–85.

    Article  CAS  PubMed  Google Scholar 

  55. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98:288–95.

    Article  CAS  PubMed  Google Scholar 

  56. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6(6):692–702.

    Article  CAS  PubMed  Google Scholar 

  57. Izawa M, Taniguchi F, Harada T. Genome-wide profiling of DNA methylation in endometriotic cells. J Endometriosis. 2012;4:147.

    Google Scholar 

  58. Sampson JA. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14:422–69.

    Google Scholar 

  59. Uno S, Zembutsu H, Hirasawa A, Takahashi A, Kubo M, Akahane T, Aoki D, Kamatani N, Hirata K, Nakamura Y. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet. 2010;42:707–10.

    Article  CAS  PubMed  Google Scholar 

  60. Adachi S, Tajima A, Quan J, Haino K, Yoshihara K, Masuzaki H, Katabuchi H, Ikuma K, Suginami H, Nishida N, Kuwano R, Okazaki Y, Kawamura Y, Sasaki T, Tokunaga K, Inoue I, Tanaka K. Meta-analysis of genome-wide association scans for genetic susceptibility to endometriosis in Japanese population. J Hum Genet. 2010;55:816–21.

    Article  PubMed  Google Scholar 

  61. Painter JN, Anderson CA, Nyholt DR, Macgregor S, Lin J, Lee SH, Lambert A, Zhao ZZ, Roseman F, Guo Q, Gordon SD, Wallace L, Henders AK, Visscher PM, Kraft P, Martin NG, Morris AP, Treloar SA, Kennedy SH, Missmer SA, Montgomery GW, Zondervan KT. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat Genet. 2011;43:51–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.

    Article  CAS  PubMed  Google Scholar 

  63. Wilson VL, Jones PA. DNA methylation decreases in aging but not in immortal cells. Science. 1983;220:1055–7.

    Article  CAS  PubMed  Google Scholar 

  64. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag Z, Stephan A, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102:10604–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Petronis A. Epigenetics and twins: three variations on the theme. Trends Genet. 2006;22:347–50.

    Article  CAS  PubMed  Google Scholar 

  66. Simmons R. Developmental origins of adult metabolic disease: concepts and controversies. Trends Endocrinol Metab. 2005;16:390–4.

    Article  CAS  PubMed  Google Scholar 

  67. Gordon L, Joo JH, Andronikos R, Ollikainen M, Wallace EM, Umstad MP, Permezel M, Oshlack A, Morley R, Carlin JB, Saffery R, Smyth GK, Craig JM. Expression discordance of monozygotic twins at birth: effect of intrauterine environment and a possible mechanism for fetal programming. Epigenetics. 2011;6:579–92.

    Article  PubMed  Google Scholar 

  68. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135:1382–6.

    CAS  PubMed  Google Scholar 

  69. Lillycrop KA. Effect of maternal diet on the epigenome: implications for human metabolic disease. Proc Nutr Soc. 2011;70:64–72.

    Article  PubMed  Google Scholar 

  70. Barnes SK, Ozanne SE. Pathways linking the early environment to long-term health and lifespan. Prog Biophys Mol Biol. 2011;106:323–36.

    Article  CAS  PubMed  Google Scholar 

  71. Feil R. Environmental and nutritional effects on the epigenetic regulation of genes. Mutat Res. 2006;600:46–57.

    Article  CAS  PubMed  Google Scholar 

  72. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.

    Article  CAS  PubMed  Google Scholar 

  73. Dobosy JR, Fu VX, Desotelle JA, Srinivasan R, Kenowski ML, Almassi N, Weindruch R, Svaren J, Jarrard DF. A methyl-deficient diet modifies histone methylation and alters Igf2 and H19 repression in the prostate. Prostate. 2008;68:1187–95.

    Article  CAS  PubMed  Google Scholar 

  74. Czyz W, Morahan JM, Ebers GC, Ramagopalan SV. Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Med. 2012;10:93.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, Haile RW, Laird PW. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet. 2012;131:1565–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Casillas Jr MA, Lopatina N, Andrews LG, Tollefsbol TO. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem. 2003;252:33–43.

    Article  CAS  PubMed  Google Scholar 

  77. Issa JP. Age-related epigenetic changes and the immune system. Clin Immunol. 2003;109:103–8.

    Article  CAS  PubMed  Google Scholar 

  78. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJM, Haussler D, Marra MA, Hirst M, Wang T, Costello JF. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Shenker N, Flanagan JM. Intragenic DNA methylation: implication of this epigenetic mechanism for cancer research. Br J Cancer. 2012;106:248–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011;29:68–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Biron VL, McManus KJ, Hu N, Hendzel MJ, Underhill DA. Distinct dynamics and distribution of histone methyl-lysine derivatives in mouse development. Dev Biol. 2004;276:337–51.

    Article  CAS  PubMed  Google Scholar 

  82. Prokocimer M, Margalit A, Gruenbaum Y. The nuclear lamina and its proposed roles in tumorigenesis: projection on the hematologic malignancies and future targeted therapy. J Struct Biol. 2006;155:351–60.

    Article  CAS  PubMed  Google Scholar 

  83. Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem. 2002;277:39195–201.

    Article  CAS  PubMed  Google Scholar 

  84. Olins DE, Olins AL. Granulocyte heterochromatin: defining the epigenome. BMC Cell Biol. 2005;6:39.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37:391–400.

    Article  CAS  PubMed  Google Scholar 

  86. Pogribny IP, Ross SA, Tryndyak VP, Pogribna M, Poirier LA, Karpinets TV. Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20 h2 and Suv-39 h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis. 2006;27:1180–6.

    Article  CAS  PubMed  Google Scholar 

  87. Tryndyak VP, Kovalchuk Q, Pogribny IP. Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther. 2006;5:65–70.

    Article  CAS  PubMed  Google Scholar 

  88. Tryndyak VP, Muskhelishvili L, Kovalchuk O, Rodriguez-Juarez R, Montgomery B, Churchwell MI, Ross SA, Beland FA, Pogribny IP. Effect of long-term tamoxifen exposure on genotoxic and epigenetic changes in rat liver: implications for tamoxifen-induced hepatocarcinogenesis. Carcinogenesis. 2006;27:1713–20.

    Article  CAS  PubMed  Google Scholar 

  89. Peter CJ, Akbarian S. Balancing histone methylation activities in psychiatric disorders. Trends Mol Med. 2011;17:372–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Takai N, Narahara H. Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis. Curr Med Chem. 2007;14:2548–53.

    Article  CAS  PubMed  Google Scholar 

  91. Norton VG, Imai BS, Yau P, Bradbury EM. Histone acetylation reduces nucleosome core particle linking number change. Cell. 1989;57(449–457).

    Google Scholar 

  92. Kawano Y, Nasu K, Li H, Tsuno A, Abe W, Takai N, Narahara H. Application of the histone deacetylase inhibitors for the treatment of endometriosis: histone modifications as pathogenesis and novel therapeutic target. Hum Reprod. 2011;26:2486–98.

    Article  CAS  PubMed  Google Scholar 

  93. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38:1378–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease. Nat Med. 2012;18:1194–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by Grants-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (Nos. 22591824 and 18591800 to M.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Izawa Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Izawa, M., Taniguchi, F., Harada, T. (2014). Epigenetics in Endometriosis. In: Harada, T. (eds) Endometriosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54421-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54421-0_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54420-3

  • Online ISBN: 978-4-431-54421-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics