Skip to main content

TGF-β in Skin Cancer and Fibrosis

  • Chapter
  • First Online:
TGF-β in Human Disease

Abstract

Among all three isoforms of the TGF-β ligand, TGF-β1 is the predominant isoform in the skin. In normal skin, canonical TGF-β signaling components, i.e., TGF-β receptors and signaling Smads, are broadly and highly expressed, whereas TGF-β ligands are expressed at very low levels. These expression patterns determine that the TGF-β signaling input to the skin is low under normal conditions but high once TGF-β ligands are upregulated under disease conditions. TGF-β1 is a potent growth inhibitor of epidermal keratinocytes, which dictates its tumor suppressive effect in early stages of skin cancer. However, cancer cells lose TGF-β-induced growth inhibition at late stages, and TGF-β-induced angiogenesis and skin inflammation create an environment favorable for skin cancer progression and metastasis. In fibrotic skin diseases, TGF-β plays a key role in activating fibroblast proliferation and stimulating the production of extracellular matrix proteins. Also, TGF-β affects many aspects of skin wound healing and in turn influences cutaneous scarring after skin damage. Fully understanding the mechanisms of TGF-β in the pathogenesis of skin cancer and fibrotic diseases will help design novel strategies in treating skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhurst RJ, Balmain A (1999) Genetic events and the role of TGF β in epithelial tumour progression. J Pathol 187:82–90

    PubMed  CAS  Google Scholar 

  • Akhurst RJ, Fee F, Balmain A (1988) Localized production of TGF-β mRNA in tumour promoter-stimulated mouse epidermis. Nature 331:363–365

    PubMed  CAS  Google Scholar 

  • Amendt C, Schirmacher P, Weber H, Blessing M (1998) Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 17:25–34

    PubMed  CAS  Google Scholar 

  • Amendt C, Mann A, Schirmacher P, Blessing M (2002) Resistance of keratinocytes to TGFβ-mediated growth restriction and apoptosis induction accelerates re-epithelialization in skin wounds. J Cell Sci 115:2189–2198

    PubMed  CAS  Google Scholar 

  • Anzano MA, Roberts AB, Meyers CA, Komoriya A, Lamb LC, Smith JM, Sporn MB (1982) Synergistic interaction of two classes of transforming growth factors from murine sarcoma cells. Cancer Res 42:4776–4778

    PubMed  CAS  Google Scholar 

  • Artlett CM (2010) Animal models of scleroderma: fresh insights. Curr Opin Rheumatol 22:677–682

    PubMed  Google Scholar 

  • Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K (2004) Impaired Smad7-Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J Clin Invest 113:253–264

    PubMed  CAS  Google Scholar 

  • Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1:260–266

    PubMed  CAS  Google Scholar 

  • Bae DS, Blazanin N, Licata M, Lee J, Glick AB (2009) Tumor suppressor and oncogene actions of TGFβ1 occur early in skin carcinogenesis and are mediated by Smad3. Mol Carcinog 48:441–453

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay B, Fan J, Guan S, Li Y, Chen M, Woodley DT, Li W (2006) A “traffic control” role for TGFβ3: orchestrating dermal and epidermal cell motility during wound healing. J Cell Biol 172:1093–1105

    PubMed  CAS  Google Scholar 

  • Batteux F, Kavian N, Servettaz A (2011) New insights on chemically induced animal models of systemic sclerosis. Curr Opin Rheumatol 23:511–518

    PubMed  CAS  Google Scholar 

  • Bettinger DA, Yager DR, Diegelmann RF, Cohen IK (1996) The effect of TGF-β on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg 98:827–833

    PubMed  CAS  Google Scholar 

  • Beyer C, Distler O, Distler JH (2012) Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheumatol 24:274–280

    PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Ishida W, Wu M, Wilkes M, Mori Y, Hinchcliff M, Leof E, Varga J (2009) A non-Smad mechanism of fibroblast activation by transforming growth factor-β via c-Abl and Egr-1: selective modulation by imatinib mesylate. Oncogene 28:1285–1297

    PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Wei J, Varga J (2012) Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 8:42–54

    CAS  Google Scholar 

  • Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15:255–273

    PubMed  CAS  Google Scholar 

  • Bornstein S, Hoot K, Han GW, Lu SL, Wang XJ (2007) Distinct roles of individual Smads in skin carcinogenesis. Mol Carcinog 46:660–664

    PubMed  CAS  Google Scholar 

  • Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ (2009) Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 119:3408–3419

    PubMed  CAS  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    PubMed  CAS  Google Scholar 

  • Bullard KM, Longaker MT, Lorenz HP (2003) Fetal wound healing: current biology. World J Surg 27:54–61

    PubMed  Google Scholar 

  • Chan T, Ghahary A, Demare J, Yang L, Iwashina T, Scott PG, Tredget EE (2002) Development, characterization, and wound healing of the keratin 14 promoted transforming growth factor-β1 transgenic mouse. Wound Repair Regen 10:177–187

    PubMed  Google Scholar 

  • Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A (1999) Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 126:1631–1642

    PubMed  CAS  Google Scholar 

  • Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J (1999) Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad 3. J Invest Dermatol 112:49–57

    PubMed  CAS  Google Scholar 

  • Coffey RJ Jr, Sipes NJ, Bascom CC, Graves-Deal R, Pennington CY, Weissman BE, Moses HL (1988) Growth modulation of mouse keratinocytes by transforming growth factors. Cancer Res 48:1596–1602

    PubMed  CAS  Google Scholar 

  • Cowin AJ, Holmes TM, Brosnan P, Ferguson MW (2001) Expression of TGF-β and its receptors in murine fetal and adult dermal wounds. Eur J Dermatol 11:424–431

    PubMed  CAS  Google Scholar 

  • Cui W, Fowlis DJ, Cousins FM, Duffie E, Bryson S, Balmain A, Akhurst RJ (1995) Concerted action of TGF-β 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev 9:945–955

    PubMed  CAS  Google Scholar 

  • Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, Akhurst RJ (1996) TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542

    PubMed  CAS  Google Scholar 

  • Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Mol Cell Biol 19:2495–2504

    PubMed  CAS  Google Scholar 

  • Davies M, Prime SS, Eveson JW, Price N, Ganapathy A, D’Mello A, Paterson IC (2012) Transforming growth factor-β enhances invasion and metastasis in Ras-transfected human malignant epidermal keratinocytes. Int J Exp Pathol 93:148–156

    PubMed  CAS  Google Scholar 

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100

    PubMed  CAS  Google Scholar 

  • Denton CP, Zheng B, Evans LA, Shi-wen X, Ong VH, Fisher I, Lazaridis K, Abraham DJ, Black CM, de Crombrugghe B (2003) Fibroblast-specific expression of a kinase-deficient type II transforming growth factor β (TGFβ) receptor leads to paradoxical activation of TGFβ signaling pathways with fibrosis in transgenic mice. J Biol Chem 278:25109–25119

    PubMed  CAS  Google Scholar 

  • Denton CP, Lindahl GE, Khan K, Shiwen X, Ong VH, Gaspar NJ, Lazaridis K, Edwards DR, Leask A, Eastwood M, Leoni P, Renzoni EA, Bou Gharios G, Abraham DJ, Black CM (2005) Activation of key profibrotic mechanisms in transgenic fibroblasts expressing kinase-deficient type II transforming growth factor-{β} receptor (T{β}RII{Δ}k). J Biol Chem 280:16053–16065

    PubMed  CAS  Google Scholar 

  • Derynck R, Zhang Y (1996) Intracellular signalling: the mad way to do it. Curr Biol 6:1226–1229

    PubMed  CAS  Google Scholar 

  • Dlugosz A, Merlino G, Yuspa SH (2002) Progress in cutaneous cancer research. J Investig Dermatol Symp Proc 7:17–26

    PubMed  Google Scholar 

  • Dong C, Zhu S, Wang T, Yoon W, Li Z, Alvarez RJ, ten Dijke P, White B, Wigley FM, Goldschmidt-Clermont PJ (2002) Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA 99:3908–3913

    PubMed  CAS  Google Scholar 

  • Eslami A, Gallant-Behm CL, Hart DA, Wiebe C, Honardoust D, Gardner H, Hakkinen L, Larjava HS (2009) Expression of integrin αvβ6 and TGF-β in scarless vs scar-forming wound healing. J Histochem Cytochem 57:543–557

    PubMed  CAS  Google Scholar 

  • Filler RB, Roberts SJ, Girardi M (2007) Cutaneous two-stage chemical carcinogenesis. CSH Protoc 2007: pdb prot4837

    Google Scholar 

  • Fowlis DJ, Flanders KC, Duffie E, Balmain A, Akhurst RJ (1992) Discordant transforming growth factor β 1 RNA and protein localization during chemical carcinogenesis of the skin. Cell Growth Differ 3:81–91

    CAS  Google Scholar 

  • Fowlis DJ, Cui W, Johnson SA, Balmain A, Akhurst RJ (1996) Altered epidermal cell growth control in vivo by inducible expression of transforming growth factor β 1 in the skin of transgenic mice. Cell Growth Differ 7:679–687

    PubMed  CAS  Google Scholar 

  • Frank S, Madlener M, Werner S (1996) Transforming growth factors β1, β2, and β3 and their receptors are differentially regulated during normal and impaired wound healing. J Biol Chem 271:10188–10193

    PubMed  CAS  Google Scholar 

  • Fujiki H, Suganuma M, Yoshizawa S, Kanazawa H, Sugimura T, Manam S, Kahn SM, Jiang W, Hoshina S, Weinstein IB (1989) Codon 61 mutations in the c-Harvey-ras gene in mouse skin tumors induced by 7,12-dimethylbenz[a]anthracene plus okadaic acid class tumor promoters. Mol Carcinog 2:184–187

    PubMed  CAS  Google Scholar 

  • Fujiwara M, Muragaki Y, Ooshima A (2005) Upregulation of transforming growth factor-β1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity. Arch Dermatol Res 297:161–169

    PubMed  CAS  Google Scholar 

  • Fusenig NE, Boukamp P (1998) Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Mol Carcinog 23: 144–158

    PubMed  CAS  Google Scholar 

  • Gabrielli A, Di Loreto C, Taborro R, Candela M, Sambo P, Nitti C, Danieli MG, DeLustro F, Dasch JR, Danieli G (1993) Immunohistochemical localization of intracellular and extracellular associated TGF β in the skin of patients with systemic sclerosis (scleroderma) and primary Raynaud’s phenomenon. Clin Immunol Immunopathol 68:340–349

    PubMed  CAS  Google Scholar 

  • Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360:1989–2003

    PubMed  CAS  Google Scholar 

  • Ganapathy A, Paterson IC, Prime SS, Eveson JW, Pring M, Price N, Threadgold SP, Davies M (2010) TGF-β inhibits metastasis in late stage human squamous cell carcinoma of the skin by a mechanism that does not involve Id1. Cancer Lett 298:107–118

    PubMed  CAS  Google Scholar 

  • Gay S, Trabandt A, Moreland LW, Gay RE (1992) Growth factors, extracellular matrix, and oncogenes in scleroderma. Arthritis Rheum 35:304–310

    PubMed  CAS  Google Scholar 

  • Ghahary A, Shen YJ, Scott PG, Gong Y, Tredget EE (1993) Enhanced expression of mRNA for transforming growth factor-β, type I and type III procollagen in human post-burn hypertrophic scar tissues. J Lab Clin Med 122:465–473

    PubMed  CAS  Google Scholar 

  • Glick AB, Sporn MB, Yuspa SH (1991) Altered regulation of TGF-β 1 and TGF-α in primary keratinocytes and papillomas expressing v-Ha-ras. Mol Carcinog 4:210–219

    PubMed  CAS  Google Scholar 

  • Glick AB, Lee MM, Darwiche N, Kulkarni AB, Karlsson S, Yuspa SH (1994) Targeted deletion of the TGF-β 1 gene causes rapid progression to squamous cell carcinoma. Genes Dev 8: 2429–2440

    PubMed  CAS  Google Scholar 

  • Glick A, Popescu N, Alexander V, Ueno H, Bottinger E, Yuspa SH (1999) Defects in transforming growth factor-β signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc Natl Acad Sci USA 96:14949–14954

    PubMed  CAS  Google Scholar 

  • Go C, Li P, Wang XJ (1999) Blocking transforming growth factor β signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer Res 59:2861–2868

    PubMed  CAS  Google Scholar 

  • Gold LI, Jussila T, Fusenig NE, Stenback F (2000) TGF-β isoforms are differentially expressed in increasing malignant grades of HaCaT keratinocytes, suggesting separate roles in skin carcinogenesis. J Pathol 190:579–588

    PubMed  CAS  Google Scholar 

  • Gruschwitz M, Muller PU, Sepp N, Hofer E, Fontana A, Wick G (1990) Transcription and expression of transforming growth factor type β in the skin of progressive systemic sclerosis: a mediator of fibrosis? J Invest Dermatol 94:197–203

    PubMed  CAS  Google Scholar 

  • Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E (2007) Loss of TGFβ signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell 12:313–327

    PubMed  CAS  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    PubMed  CAS  Google Scholar 

  • Han G, Wang XJ (2011) Roles of TGFβ signaling Smads in squamous cell carcinoma. Cell Biosci 1:41

    PubMed  CAS  Google Scholar 

  • Han G, Lu SL, Li AG, He W, Corless CL, Kulesz-Martin M, Wang XJ (2005) Distinct mechanisms of TGF-β1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 115:1714–1723

    PubMed  CAS  Google Scholar 

  • Han G, Li F, Ten Dijke P, Wang XJ (2011) Temporal smad7 transgene induction in mouse epidermis accelerates skin wound healing. Am J Pathol 179:1768–1779

    PubMed  CAS  Google Scholar 

  • Henry G, Li W, Garner W, Woodley DT (2003) Migration of human keratinocytes in plasma and serum and wound re-epithelialisation. Lancet 361:574–576

    PubMed  CAS  Google Scholar 

  • Heyer J, Escalante-Alcalde D, Lia M, Boettinger E, Edelmann W, Stewart CL, Kucherlapati R (1999) Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis. Proc Natl Acad Sci USA 96:12595–12600

    PubMed  CAS  Google Scholar 

  • Higley H, Persichitte K, Chu S, Waegell W, Vancheeswaran R, Black C (1994) Immunocytochemical localization and serologic detection of transforming growth factor β 1. Association with type I procollagen and inflammatory cell markers in diffuse and limited systemic sclerosis, morphea, and Raynaud’s phenomenon. Arthritis Rheum 37:278–288

    PubMed  CAS  Google Scholar 

  • Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, Park SH, Wang XJ, Kim SJ (2007) Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 8:504–513

    PubMed  CAS  Google Scholar 

  • Hoot KE, Lighthall J, Han G, Lu SL, Li A, Ju W, Kulesz-Martin M, Bottinger E, Wang XJ (2008) Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J Clin Invest 118:2722–2732

    PubMed  CAS  Google Scholar 

  • Hoot KE, Oka M, Han G, Bottinger E, Zhang Q, Wang XJ (2010) HGF upregulation contributes to angiogenesis in mice with keratinocyte-specific Smad2 deletion. J Clin Invest 120:3606–3616

    PubMed  CAS  Google Scholar 

  • Hosokawa R, Urata MM, Ito Y, Bringas P Jr, Chai Y (2005) Functional significance of Smad2 in regulating basal keratinocyte migration during wound healing. J Invest Dermatol 125: 1302–1309

    PubMed  CAS  Google Scholar 

  • Hoyles RK, Khan K, Shiwen X, Howat SL, Lindahl GE, Leoni P, du Bois RM, Wells AU, Black CM, Abraham DJ, Denton CP (2008) Fibroblast-specific perturbation of transforming growth factor β signaling provides insight into potential pathogenic mechanisms of scleroderma-associated lung fibrosis: exaggerated response to alveolar epithelial injury in a novel mouse model. Arthritis Rheum 58:1175–1188

    PubMed  CAS  Google Scholar 

  • Hsu M, Peled ZM, Chin GS, Liu W, Longaker MT (2001) Ontogeny of expression of transforming growth factor-β 1 (TGF-β 1), TGF-β 3, and TGF-β receptors I and II in fetal rat fibroblasts and skin. Plast Reconstr Surg 107:1787–1794; discussion 1795–1786

    PubMed  CAS  Google Scholar 

  • Iwamoto N, Distler JH, Distler O (2011) Tyrosine kinase inhibitors in the treatment of systemic sclerosis: from animal models to clinical trials. Curr Rheumatol Rep 13:21–27

    PubMed  CAS  Google Scholar 

  • Jinnin M (2010) Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol 37:11–25

    PubMed  CAS  Google Scholar 

  • Jinnin M, Ihn H, Mimura Y, Asano Y, Tamaki K (2006) Potential regulatory elements of the constitutive up-regulated α2(I) collagen gene in scleroderma dermal fibroblasts. Biochem Biophys Res Commun 343:904–909

    PubMed  CAS  Google Scholar 

  • Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M (1998) Increased expression of TGF-β receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-β signaling to scleroderma phenotype. J Invest Dermatol 110:47–51

    PubMed  CAS  Google Scholar 

  • Kleiter I, Song J, Lukas D, Hasan M, Neumann B, Croxford AL, Pedre X, Hovelmeyer N, Yogev N, Mildner A, Prinz M, Wiese E, Reifenberg K, Bittner S, Wiendl H, Steinman L, Becker C, Bogdahn U, Neurath MF, Steinbrecher A, Waisman A (2010) Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 133:1067–1081

    PubMed  Google Scholar 

  • Koch RM, Roche NS, Parks WT, Ashcroft GS, Letterio JJ, Roberts AB (2000) Incisional wound healing in transforming growth factor-β1 null mice. Wound Repair Regen 8:179–191

    PubMed  CAS  Google Scholar 

  • Kopp J, Preis E, Said H, Hafemann B, Wickert L, Gressner AM, Pallua N, Dooley S (2005) Abrogation of transforming growth factor-β signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem 280:21570–21576

    PubMed  CAS  Google Scholar 

  • Kreuter A, Hyun J, Skrygan M, Sommer A, Tomi NS, Breuckmann F, Altmeyer P, Gambichler T (2006) Ultraviolet A1 phototherapy decreases inhibitory SMAD7 gene expression in localized scleroderma. Arch Dermatol Res 298:265–272

    PubMed  CAS  Google Scholar 

  • Kubo M, Ihn H, Yamane K, Tamaki K (2001) Up-regulated expression of transforming growth factor β receptors in dermal fibroblasts in skin sections from patients with localized scleroderma. Arthritis Rheum 44:731–734

    PubMed  CAS  Google Scholar 

  • Kubo M, Ihn H, Yamane K, Tamaki K (2002) Upregulated expression of transforming growth factor-β receptors in dermal fibroblasts of skin sections from patients with systemic sclerosis. J Rheumatol 29:2558–2564

    PubMed  CAS  Google Scholar 

  • Kulozik M, Hogg A, Lankat-Buttgereit B, Krieg T (1990) Co-localization of transforming growth factor β 2 with α 1(I) procollagen mRNA in tissue sections of patients with systemic sclerosis. J Clin Invest 86:917–922

    PubMed  CAS  Google Scholar 

  • Lakos G, Takagawa S, Chen SJ, Ferreira AM, Han G, Masuda K, Wang XJ, DiPietro LA, Varga J (2004) Targeted disruption of TGF-β/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol 165:203–217

    PubMed  CAS  Google Scholar 

  • Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126:1172–1180

    PubMed  CAS  Google Scholar 

  • Lee TY, Chin GS, Kim WJ, Chau D, Gittes GK, Longaker MT (1999) Expression of transforming growth factor β 1, 2, and 3 proteins in keloids. Ann Plast Surg 43:179–184

    PubMed  CAS  Google Scholar 

  • Li W, Qiao W, Chen L, Xu X, Yang X, Li D, Li C, Brodie SG, Meguid MM, Hennighausen L, Deng CX (2003) Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 130:6143–6153

    PubMed  CAS  Google Scholar 

  • Li AG, Lu SL, Zhang MX, Deng C, Wang XJ (2004a) Smad3 knockout mice exhibit a resistance to skin chemical carcinogenesis. Cancer Res 64:7836–7845

    PubMed  CAS  Google Scholar 

  • Li AG, Wang D, Feng XH, Wang XJ (2004b) Latent TGFβ1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J 23:1770–1781

    PubMed  CAS  Google Scholar 

  • Li AG, Lu SL, Han G, Hoot KE, Wang XJ (2006) Role of TGFβ in skin inflammation and carcinogenesis. Mol Carcinog 45:389–396

    PubMed  CAS  Google Scholar 

  • Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    PubMed  CAS  Google Scholar 

  • Martin P, Dickson MC, Millan FA, Akhurst RJ (1993) Rapid induction and clearance of TGFβ 1 is an early response to wounding in the mouse embryo. Dev Genet 14:225–238

    PubMed  CAS  Google Scholar 

  • Massague J (1996) TGFβ signaling: receptors, transducers, and Mad proteins. Cell 85:947–950

    PubMed  CAS  Google Scholar 

  • Massague J (1999) Wounding Smad. Nat Cell Biol 1:E117–E119

    PubMed  CAS  Google Scholar 

  • Millet C, Zhang YE (2007) Roles of Smad3 in TGF-β signaling during carcinogenesis. Crit Rev Eukaryot Gene Expr 17:281–293

    PubMed  CAS  Google Scholar 

  • Mori Y, Chen SJ, Varga J (2003) Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum 48:1964–1978

    PubMed  CAS  Google Scholar 

  • Mrowietz U, Seifert O (2009) Keloid scarring: new treatments ahead. Actas Dermosifiliogr 100(Suppl 2):75–83

    PubMed  Google Scholar 

  • Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P (1997) TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362

    PubMed  CAS  Google Scholar 

  • Namazi MR, Fallahzadeh MK, Schwartz RA (2011) Strategies for prevention of scars: what can we learn from fetal skin? Int J Dermatol 50:85–93

    PubMed  Google Scholar 

  • Nath RK, LaRegina M, Markham H, Ksander GA, Weeks PM (1994) The expression of transforming growth factor type β in fetal and adult rabbit skin wounds. J Pediatr Surg 29:416–421

    PubMed  CAS  Google Scholar 

  • Nomura M, Li E (1998) Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393:786–790

    PubMed  CAS  Google Scholar 

  • Olutoye OO, Yager DR, Cohen IK, Diegelmann RF (1996) Lower cytokine release by fetal porcine platelets: a possible explanation for reduced inflammation after fetal wounding. J Pediatr Surg 31:91–95

    PubMed  CAS  Google Scholar 

  • Oshima M, Oshima H, Taketo MM (1996) TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179:297–302

    PubMed  CAS  Google Scholar 

  • Owens P, Bazzi H, Engelking E, Han G, Christiano AM, Wang XJ (2008) Smad4-dependent desmoglein-4 expression contributes to hair follicle integrity. Dev Biol 322:156–166

    PubMed  CAS  Google Scholar 

  • Owens P, Engelking E, Han G, Haeger SM, Wang XJ (2010) Epidermal Smad4 deletion results in aberrant wound healing. Am J Pathol 176:122–133

    PubMed  CAS  Google Scholar 

  • Pannu J, Gore-Hyer E, Yamanaka M, Smith EA, Rubinchik S, Dong JY, Jablonska S, Blaszczyk M, Trojanowska M (2004) An increased transforming growth factor β receptor type I:type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor β receptor type II in scleroderma. Arthritis Rheum 50:1566–1577

    PubMed  CAS  Google Scholar 

  • Pannu J, Nakerakanti S, Smith E, ten Dijke P, Trojanowska M (2007) Transforming growth factor-β receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways. J Biol Chem 282:10405–10413

    PubMed  CAS  Google Scholar 

  • Pannu J, Asano Y, Nakerakanti S, Smith E, Jablonska S, Blaszczyk M, ten Dijke P, Trojanowska M (2008) Smad1 pathway is activated in systemic sclerosis fibroblasts and is targeted by imatinib mesylate. Arthritis Rheum 58:2528–2537

    PubMed  CAS  Google Scholar 

  • Patamalai B, Burow DL, Gimenez-Conti I, Zenklusen JC, Conti CJ, Klein-Szanto AJ, Fischer SM (1994) Altered expression of transforming growth factor-β 1 mRNA and protein in mouse skin carcinogenesis. Mol Carcinog 9:220–229

    PubMed  CAS  Google Scholar 

  • Phan TT, Lim IJ, Aalami O, Lorget F, Khoo A, Tan EK, Mukhopadhyay A, Longaker MT (2005) Smad3 signalling plays an important role in keloid pathogenesis via epithelial-mesenchymal interactions. J Pathol 207:232–242

    PubMed  CAS  Google Scholar 

  • Qiao W, Li AG, Owens P, Xu X, Wang XJ, Deng CX (2006) Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 25:207–217

    PubMed  CAS  Google Scholar 

  • Quan T, He T, Kang S, Voorhees JJ, Fisher GJ (2002) Ultraviolet irradiation alters transforming growth factor β/smad pathway in human skin in vivo. J Invest Dermatol 119:499–506

    PubMed  CAS  Google Scholar 

  • Querfeld C, Eckes B, Huerkamp C, Krieg T, Sollberg S (1999) Expression of TGF-β 1, -β 2 and -β 3 in localized and systemic scleroderma. J Dermatol Sci 21:13–22

    PubMed  CAS  Google Scholar 

  • Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB (1985) Type β transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci USA 82:119–123

    PubMed  CAS  Google Scholar 

  • Rolfe KJ, Richardson J, Vigor C, Irvine LM, Grobbelaar AO, Linge C (2007) A role for TGF-β1-induced cellular responses during wound healing of the non-scarring early human fetus? J Invest Dermatol 127:2656–2667

    PubMed  CAS  Google Scholar 

  • Roop DR, Lowy DR, Tambourin PE, Strickland J, Harper JR, Balaschak M, Spangler EF, Yuspa SH (1986) An activated Harvey ras oncogene produces benign tumours on mouse epidermal tissue. Nature 323:822–824

    PubMed  CAS  Google Scholar 

  • Rosenbloom J, Castro SV, Jimenez SA (2010) Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann Intern Med 152:159–166

    PubMed  Google Scholar 

  • Rudnicka L, Varga J, Christiano AM, Iozzo RV, Jimenez SA, Uitto J (1994) Elevated expression of type VII collagen in the skin of patients with systemic sclerosis. Regulation by transforming growth factor-β. J Clin Invest 93:1709–1715

    PubMed  CAS  Google Scholar 

  • Schmid P, Itin P, Cherry G, Bi C, Cox DA (1998) Enhanced expression of transforming growth factor-β type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J Pathol 152:485–493

    PubMed  CAS  Google Scholar 

  • Seifert O, Mrowietz U (2009) Keloid scarring: bench and bedside. Arch Dermatol Res 301:259–272

    PubMed  Google Scholar 

  • Sellheyer K, Bickenbach JR, Rothnagel JA, Bundman D, Longley MA, Krieg T, Roche NS, Roberts AB, Roop DR (1993) Inhibition of skin development by overexpression of transforming growth factor β 1 in the epidermis of transgenic mice. Proc Natl Acad Sci USA 90:5237–5241

    PubMed  CAS  Google Scholar 

  • Shah M, Foreman DM, Ferguson MW (1995) Neutralisation of TGF-β 1 and TGF-β 2 or exogenous addition of TGF-β 3 to cutaneous rat wounds reduces scarring. J Cell Sci 108(Pt 3):985–1002

    PubMed  CAS  Google Scholar 

  • Shih B, Bayat A (2010) Genetics of keloid scarring. Arch Dermatol Res 302:319–339

    PubMed  CAS  Google Scholar 

  • Shipley GD, Pittelkow MR, Wille JJ Jr, Scott RE, Moses HL (1986) Reversible inhibition of normal human prokeratinocyte proliferation by type β transforming growth factor-growth inhibitor in serum-free medium. Cancer Res 46:2068–2071

    PubMed  CAS  Google Scholar 

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    PubMed  CAS  Google Scholar 

  • Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12:107–119

    PubMed  CAS  Google Scholar 

  • Sonnylal S, Denton CP, Zheng B, Keene DR, He R, Adams HP, Vanpelt CS, Geng YJ, Deng JM, Behringer RR, de Crombrugghe B (2007) Postnatal induction of transforming growth factor β signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum 56:334–344

    PubMed  CAS  Google Scholar 

  • Soo C, Beanes SR, Hu FY, Zhang X, Dang C, Chang G, Wang Y, Nishimura I, Freymiller E, Longaker MT, Lorenz HP, Ting K (2003) Ontogenetic transition in fetal wound transforming growth factor-β regulation correlates with collagen organization. Am J Pathol 163:2459–2476

    PubMed  CAS  Google Scholar 

  • Sporn MB (1999) TGF-β: 20 years and counting. Microbes Infect 1:1251–1253

    PubMed  CAS  Google Scholar 

  • Sporn MB (2006) The early history of TGF-β, and a brief glimpse of its future. Cytokine Growth Factor Rev 17:3–7

    PubMed  CAS  Google Scholar 

  • Sullivan KM, Lorenz HP, Meuli M, Lin RY, Adzick NS (1995) A model of scarless human fetal wound repair is deficient in transforming growth factor β. J Pediatr Surg 30:198–202; discussion 202–193

    PubMed  CAS  Google Scholar 

  • Tannehill-Gregg SH, Kusewitt DF, Rosol TJ, Weinstein M (2004) The roles of Smad2 and Smad3 in the development of chemically induced skin tumors in mice. Vet Pathol 41:278–282

    PubMed  CAS  Google Scholar 

  • Teng Y, Sun AN, Pan XC, Yang G, Yang LL, Wang MR, Yang X (2006) Synergistic function of Smad4 and PTEN in suppressing forestomach squamous cell carcinoma in the mouse. Cancer Res 66:6972–6981

    PubMed  CAS  Google Scholar 

  • Thiagalingam S, Lengauer C, Leach FS, Schutte M, Hahn SA, Overhauser J, Willson JK, Markowitz S, Hamilton SR, Kern SE, Kinzler KW, Vogelstein B (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet 13:343–346

    PubMed  CAS  Google Scholar 

  • Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128:3609–3621

    PubMed  CAS  Google Scholar 

  • Tsujita-Kyutoku M, Uehara N, Matsuoka Y, Kyutoku S, Ogawa Y, Tsubura A (2005) Comparison of transforming growth factor-β/Smad signaling between normal dermal fibroblasts and fibroblasts derived from central and peripheral areas of keloid lesions. In Vivo 19:959–963

    PubMed  CAS  Google Scholar 

  • Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 4:19–24

    PubMed  CAS  Google Scholar 

  • Tucker RF, Shipley GD, Moses HL, Holley RW (1984) Growth inhibitor from BSC-1 cells closely related to platelet type β transforming growth factor. Science 226:705–707

    PubMed  CAS  Google Scholar 

  • Tziotzios C, Profyris C, Sterling J (2012) Cutaneous scarring: pathophysiology, molecular mechanisms, and scar reduction therapeutics Part II. Strategies to reduce scar formation after dermatologic procedures. J Am Acad Dermatol 66:13–24

    PubMed  CAS  Google Scholar 

  • Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567

    PubMed  CAS  Google Scholar 

  • Varga J, Jimenez SA (1986) Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-β. Biochem Biophys Res Commun 138:974–980

    PubMed  CAS  Google Scholar 

  • Vijayachandra K, Lee J, Glick AB (2003) Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model. Cancer Res 63:3447–3452

    PubMed  CAS  Google Scholar 

  • Vuorio T, Kahari VM, Black C, Vuorio E (1991) Expression of osteonectin, decorin, and transforming growth factor-β 1 genes in fibroblasts cultured from patients with systemic sclerosis and morphea. J Rheumatol 18:247–251

    PubMed  CAS  Google Scholar 

  • Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ (1998) Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92:797–808

    PubMed  CAS  Google Scholar 

  • Wang XJ (2001) Role of TGFβ signaling in skin carcinogenesis. Microsc Res Tech 52:420–429

    PubMed  Google Scholar 

  • Wang XJ, Greenhalgh DA, Bickenbach JR, Jiang A, Bundman DS, Krieg T, Derynck R, Roop DR (1997) Expression of a dominant-negative type II transforming growth factor β (TGF-β) receptor in the epidermis of transgenic mice blocks TGF-β-mediated growth inhibition. Proc Natl Acad Sci USA 94:2386–2391

    PubMed  CAS  Google Scholar 

  • Wang XJ, Han G, Owens P, Siddiqui Y, Li AG (2006) Role of TGF β-mediated inflammation in cutaneous wound healing. J Investig Dermatol Symp Proc 11:112–117

    PubMed  CAS  Google Scholar 

  • Weeks BH, He W, Olson KL, Wang XJ (2001) Inducible expression of transforming growth factor β1 in papillomas causes rapid metastasis. Cancer Res 61:7435–7443

    PubMed  CAS  Google Scholar 

  • Wei J, Bhattacharyya S, Tourtellotte WG, Varga J (2011) Fibrosis in systemic sclerosis: emerging concepts and implications for targeted therapy. Autoimmun Rev 10:267–275

    PubMed  CAS  Google Scholar 

  • Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX (1998) Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci USA 95:9378–9383

    PubMed  CAS  Google Scholar 

  • Whitby DJ, Ferguson MW (1991) Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol 147:207–215

    PubMed  CAS  Google Scholar 

  • Wu CS, Wu PH, Fang AH, Lan CC (2012) FK506 inhibits the enhancing effects of transforming growth factor-β1 on collagen expression and TGF-β/Smad signaling in keloid fibroblasts: implication for new therapeutic approach. Br J Dermatol 167(3):532–541

    PubMed  CAS  Google Scholar 

  • Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529

    PubMed  CAS  Google Scholar 

  • Yamamoto T (2010) Animal model of systemic sclerosis. J Dermatol 37:26–41

    PubMed  CAS  Google Scholar 

  • Yang X, Li C, Xu X, Deng C (1998) The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci USA 95:3667–3672

    PubMed  CAS  Google Scholar 

  • Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J 18:1280–1291

    PubMed  CAS  Google Scholar 

  • Yang L, Chan T, Demare J, Iwashina T, Ghahary A, Scott PG, Tredget EE (2001) Healing of burn wounds in transgenic mice overexpressing transforming growth factor-β 1 in the epidermis. Am J Pathol 159:2147–2157

    PubMed  CAS  Google Scholar 

  • Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X, Li X, Han X, Xia Z, Deng H, Yang X (2005) Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 65:8671–8678

    PubMed  CAS  Google Scholar 

  • Yu H, Bock O, Bayat A, Ferguson MW, Mrowietz U (2006) Decreased expression of inhibitory SMAD6 and SMAD7 in keloid scarring. J Plastic Reconstr Aesthet Surg 59:221–229

    Google Scholar 

  • Yuspa SH (1986) Cutaneous chemical carcinogenesis. J Am Acad Dermatol 15:1031–1044

    PubMed  CAS  Google Scholar 

  • Zhang K, Garner W, Cohen L, Rodriguez J, Phan S (1995) Increased types I and III collagen and transforming growth factor-β 1 mRNA and protein in hypertrophic burn scar. J Invest Dermatol 104:750–754

    PubMed  CAS  Google Scholar 

  • Zhang W, Ou J, Inagaki Y, Greenwel P, Ramirez F (2000) Synergistic cooperation between Sp1 and Smad3/Smad4 mediates transforming growth factor β1 stimulation of α 2(I)-collagen (COL1A2) transcription. J Biol Chem 275:39237–39245

    PubMed  CAS  Google Scholar 

  • Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94:703–714

    PubMed  CAS  Google Scholar 

  • Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, Zhao H, You Y, Xiao X, Zuo X (2012) MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol 32:514–522

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The original work from the Wang laboratory is supported by NIH grants CA79998, CA87849 and AR061792. The authors thank Pamela Garl for carefully proofreading this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Han, G., Han, Z., Wang, XJ. (2013). TGF-β in Skin Cancer and Fibrosis. In: Moustakas, A., Miyazawa, K. (eds) TGF-β in Human Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54409-8_9

Download citation

Publish with us

Policies and ethics