Skip to main content

The Multifunctional Roles of TGF-β in Navigating the Metastatic Cascade

  • Chapter
  • First Online:
TGF-β in Human Disease

Abstract

The role of TGF-β during tumorigenesis is best characterized by the diverse functions this multifunctional cytokine exhibits in early-stage versus late-stage cancers. For instance, during the initial stages of tumorigenesis, TGF-β uniformly acts as a potent tumor suppressor, even in low-grade carcinomas capable of evading the cytostatic activities of TGF-β. However, as carcinoma cells continue to evolve and progress towards more aggressive disease states they typically acquire the ability to surmount the last vestiges of the tumor suppressing activities of TGF-β, ultimately gaining a selective advantage that enables TGF-β to promote their metastatic progression and production of recurrent secondary tumor lesions that are refractory to standard chemotherapies. The molecular, cellular, and microenvironmental mechanisms that permit metastatic carcinoma cells to usurp and commandeer TGF-β for oncogenic activities are highly diverse and remain incompletely understood. Here we review recent advances that provide new insights into how aggressive carcinoma cell populations are selected to respond to the oncogenic activities of TGF-β, focusing specifically on its essential functions coupled to metastatic outgrowth and the acquisition of chemoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Epithelial-mesenchymal transition

ERK:

Extracellular signal-regulated kinase

FAK:

Focal adhesion kinase

JNK:

c-Jun N-terminal kinase

LAP:

Latency-associated peptide

MAP kinase:

Mitogen-activated protein kinase

MEC:

Mammary epithelial cell

MET:

Mesenchymal–epithelial transition

NF-κB:

Nuclear factor-κB

PI3K:

Phosphoinositide-3-kinase

TGF-β:

Transforming growth factor-β

TβR-I:

TGF-β type I receptor

TβR-II:

TGF-β type II receptor

TβR-III:

TGF-β type III receptors

References

  • Allington TM, Galliher-Beckley AJ, Schiemann WP (2009) Activated Abl kinase inhibits oncogenic transforming growth factor-β signaling and tumorigenesis in mammary tumors. FASEB J 23:4231–4243

    Article  PubMed  CAS  Google Scholar 

  • Armstrong AJ, Marengo MS, Oltean S et al (2011) Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 9:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Balanis NYM, Wendt MK, Schiemann WP, Carlin CR (2011) A conformationally flexible region of the EGF receptor regulates formation of membrane protrusions by controlling selective binding to fibronectin receptors. Mol Biol Cell 22:4288–4301

    Article  PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH, Akhurst RJ (2009) Transforming growth factor-β in breast cancer: too much, too late. Breast Cancer Res 11:202

    Article  PubMed  Google Scholar 

  • Barkan D, Kleinman H, Simmons JL et al (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68:6241–6250

    Article  PubMed  CAS  Google Scholar 

  • Barkan D, El Touny LH, Michalowski AM et al (2010) Metastatic growth from dormant cells induced by a Col-I-enriched fibrotic environment. Cancer Res 70:5706–5716

    Article  PubMed  CAS  Google Scholar 

  • Baum B, Settleman J, Quinlan MP (2008) Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19:294–308

    Article  PubMed  CAS  Google Scholar 

  • Brackstone M, Townson JL, Chambers AF (2007) Tumour dormancy in breast cancer: an update. Breast Cancer Res 9:208

    Article  PubMed  Google Scholar 

  • Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    Article  PubMed  CAS  Google Scholar 

  • Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ, Yang J (2011) Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res 71:245–254

    Article  PubMed  CAS  Google Scholar 

  • Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66:11271–11278

    Article  PubMed  CAS  Google Scholar 

  • Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823

    Article  PubMed  CAS  Google Scholar 

  • Cottonham CL, Kaneko S, Xu L (2010) miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem 285:35293–35302

    Article  PubMed  CAS  Google Scholar 

  • Creighton CJ, Li X, Landis M et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106:13820–13825

    Article  PubMed  CAS  Google Scholar 

  • Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61

    Article  PubMed  CAS  Google Scholar 

  • Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD (2009) ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell 20:2207–2217

    Article  PubMed  CAS  Google Scholar 

  • Erler JT, Giaccia AJ (2006) Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66:10238–10241

    Article  PubMed  CAS  Google Scholar 

  • Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    Article  PubMed  CAS  Google Scholar 

  • Farmer P, Bonnefoi H, Anderle P et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74

    Article  PubMed  CAS  Google Scholar 

  • Feng XH, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  PubMed  CAS  Google Scholar 

  • Galliher AJ, Schiemann WP (2006) β3 integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 8:R42

    Article  PubMed  Google Scholar 

  • Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 67:3752–3758

    Article  PubMed  CAS  Google Scholar 

  • Galliher AJ, Neil JR, Schiemann WP (2006) Role of transforming growth factor-β in cancer progression. Future Oncol 2:743–763

    Article  PubMed  CAS  Google Scholar 

  • Galliher-Beckley AJ, Schiemann WP (2008) Grb2 binding to Tyr284 in TβR-II is essential for mammary tumor growth and metastasis stimulated by TGF-β. Carcinogenesis 29:244–251

    Article  PubMed  CAS  Google Scholar 

  • Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-β1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129:1375–1383

    Article  PubMed  CAS  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  PubMed  CAS  Google Scholar 

  • Gregory PA, Bracken CP, Smith E et al (2011) An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 22:1686–1698

    Article  PubMed  CAS  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    PubMed  CAS  Google Scholar 

  • Hall A (2009) The cytoskeleton and cancer. Cancer Metastasis Rev 28:5–14

    Article  PubMed  Google Scholar 

  • Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720

    Article  PubMed  CAS  Google Scholar 

  • Hayashida T, Decaestecker M, Schnaper HW (2003) Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. FASEB J 17:1576–1578

    PubMed  CAS  Google Scholar 

  • Heldin CH, Moustakas A (2012) Role of Smads in TGFβ signaling. Cell Tissue Res 347:21–36

    Article  PubMed  CAS  Google Scholar 

  • Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGFβ in cancer. FEBS Lett 586:1959–1970

    Article  PubMed  CAS  Google Scholar 

  • Holzmann K, Grunt T, Heinzle C et al (2012) Alternative splicing of fibroblast growth factor receptor IgIII loops in cancer. J Nucleic Acids 2012:950508

    Article  PubMed  Google Scholar 

  • Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M (2008) Role of Ras signaling in the induction of Snail by TGF-β. J Biol Chem 284:245–253

    Article  PubMed  Google Scholar 

  • Horiguchi K, Sakamoto K, Koinuma D et al (2012) TGF-β drives epithelial-mesenchymal transition through δEF1-mediated downregulation of ESRP. Oncogene 31:3190–3201

    Article  PubMed  CAS  Google Scholar 

  • Howe EN, Cochrane DR, Richer JK (2011) Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 13:R45

    Article  PubMed  CAS  Google Scholar 

  • Ignotz RA, Massague J (1986) Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261:4337–4345

    PubMed  CAS  Google Scholar 

  • Jain VK, Turner NC (2012) Challenges and opportunities in the targeting of fibroblast growth factor receptors in breast cancer. Breast Cancer Res 14:208

    Article  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118:277–279

    Article  PubMed  CAS  Google Scholar 

  • Kong W, Yang H, He L et al (2008) MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28:6773–6784

    Article  PubMed  CAS  Google Scholar 

  • Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    Article  PubMed  CAS  Google Scholar 

  • Korpal M, Yan J, Lu X, Xu S, Lerit DA, Kang Y (2009) Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 15:960–966

    Article  PubMed  CAS  Google Scholar 

  • Korpal M, Ell BJ, Buffa FM et al (2011) Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Kumar NM, Sigurdson SL, Sheppard D, Lwebuga-Mukasa JS (1995) Differential modulation of integrin receptors and extracellular matrix laminin by transforming growth factor-β 1 in rat alveolar epithelial cells. Exp Cell Res 221:385–394

    Article  PubMed  CAS  Google Scholar 

  • Leptin M (1991) Twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev 5:1568–1576

    Article  PubMed  CAS  Google Scholar 

  • Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  PubMed  CAS  Google Scholar 

  • Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  • Massabeau C, Rouquette I, Lauwers-Cances V et al (2009) Basic fibroblast growth factor-2/β3 integrin expression profile: Signature of local progression after chemoradiotherapy for patients with locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 75:696–702

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Gomis RR (2006) The logic of TGFβ signaling. FEBS Lett 580:2811–2820

    Article  PubMed  CAS  Google Scholar 

  • Matsuura I, Wang G, He D, Liu F (2005) Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3. Biochemistry 44:12546–12553

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K (2011) Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis 32:1578–1588

    Article  PubMed  CAS  Google Scholar 

  • Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    Article  PubMed  Google Scholar 

  • Mori S, Wu CY, Yamaji S et al (2008) Direct binding of integrin αvβ3 to FGF1 plays a role in FGF1 signaling. J Biol Chem 283:18066–18075

    Article  PubMed  CAS  Google Scholar 

  • Mullen AC, Orlando DA, Newman JJ et al (2011) Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell 147:565–576

    Article  PubMed  CAS  Google Scholar 

  • Neil JR, Schiemann WP (2008) Altered TAB1:IκB kinase interaction promotes transforming growth factor β-mediated nuclear factor-κB activation during breast cancer progression. Cancer Res 68:1462–1470

    Article  PubMed  CAS  Google Scholar 

  • Neil JR, Johnson KM, Nemenoff RA, Schiemann WP (2008) COX-2 inactivates Smad signaling and enhances EMT stimulated by TGF-β through a PGE2-dependent mechanism. Carcinogenesis 29:2227–2235

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  PubMed  CAS  Google Scholar 

  • Nummela P, Lammi J, Soikkeli J, Saksela O, Laakkonen P, Holtta E (2012) Transforming growth factor β-induced (TGFBI) is an anti-adhesive protein regulating the invasive growth of melanoma cells. Am J Pathol 180:1663–1674

    Article  PubMed  CAS  Google Scholar 

  • Padua D, Zhang XH, Wang Q et al (2008) TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77

    Article  PubMed  CAS  Google Scholar 

  • Parvani JG, Taylor MA, Schiemann WP (2011) Noncanonical TGF-β signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 16:127–146

    Article  PubMed  Google Scholar 

  • Pechkovsky DV, Scaffidi AK, Hackett TL et al (2008) Transforming growth factor β1 induces αvβ3 integrin expression in human lung fibroblasts via a β3 integrin-, c-Src-, and p38 MAPK-dependent pathway. J Biol Chem 283:12898–12908

    Article  PubMed  CAS  Google Scholar 

  • Rahimi RA, Leof EB (2007) TGF-β signaling: a tale of two responses. J Cell Biochem 102:593–608

    Article  PubMed  CAS  Google Scholar 

  • Rifkin DB (2005) Latent transforming growth factor-β (TGF-β) binding proteins: Orchestrators of TGF-β availability. J Biol Chem 280:7409–7412

    Article  PubMed  CAS  Google Scholar 

  • Safina A, Ren MQ, Vandette E, Bakin AV (2008) TAK1 is required for TGF-β1-mediated regulation of matrix metalloproteinase-9 and metastasis. Oncogene 27:1198–1207

    Article  PubMed  CAS  Google Scholar 

  • Schliekelman MJ, Gibbons DL, Faca VM et al (2011) Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res 71:7670–7682

    Article  PubMed  CAS  Google Scholar 

  • Sharma SV, Lee DY, Li B et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    Article  PubMed  CAS  Google Scholar 

  • Shibue T, Weinberg RA (2009) Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA 106:10290–10295

    Article  PubMed  CAS  Google Scholar 

  • Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    Article  PubMed  CAS  Google Scholar 

  • Shirakihara T, Horiguchi K, Miyazawa K et al (2011) TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J 30:783–795

    Article  PubMed  CAS  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  • Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  PubMed  CAS  Google Scholar 

  • Stover DG, Bierie B, Moses HL (2007) A delicate balance: TGF-β and the tumor microenvironment. J Cell Biochem 101:851–861

    Article  PubMed  CAS  Google Scholar 

  • Talmadge JE, Fidler IJ (2010) The biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669

    Article  PubMed  CAS  Google Scholar 

  • Taube JH, Herschkowitz JI, Komurov K et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 107:15449–15454

    Article  PubMed  CAS  Google Scholar 

  • Taylor MA, Parvani JG, Schiemann WP (2010) The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-β in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 15:169–190

    Article  PubMed  Google Scholar 

  • Taylor MA, Amin JD, Kirschmann DA, Schiemann WP (2011) Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells. Neoplasia 13:406–418

    PubMed  CAS  Google Scholar 

  • Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP (2013) TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest 123:150–163

    Article  PubMed  CAS  Google Scholar 

  • Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A (2006) Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174:175–183

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Schiemann WP (2009) The TGF-β paradox in human cancer: an update. Future Oncol 5:259–271

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Schiemann WP (2010) PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-β signaling during mammary tumorigenesis. FASEB J 24:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Neil JR, Schiemann WP (2010) Transforming growth factor-β and the hallmarks of cancer. Cell Signal 23:951–962

    Article  PubMed  Google Scholar 

  • Warzecha CC, Jiang P, Amirikian K et al (2010) An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 29:3286–3300

    Article  PubMed  CAS  Google Scholar 

  • Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW (2010) TGF-β1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89:1439–1443

    Article  PubMed  CAS  Google Scholar 

  • Wendt M, Schiemann W (2009) Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis. Breast Cancer Res 11:R68

    Article  PubMed  Google Scholar 

  • Wendt MK, Allington TM, Schiemann WP (2009a) Mechanisms of the epithelial-mesenchymal transition by TGF-β. Future Oncol 5:1145–1168

    Article  PubMed  CAS  Google Scholar 

  • Wendt MK, Smith JA, Schiemann WP (2009b) p130Cas is required for mammary tumor growth and transforming growth factor-β-mediated metastasis through regulation of Smad2/3 activity. J Biol Chem 284:34145–34156

    Article  PubMed  CAS  Google Scholar 

  • Wendt MK, Smith JA, Schiemann WP (2010) Transforming growth factor-β-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene 29:6485–6498

    Article  PubMed  CAS  Google Scholar 

  • Wendt MK, Molter J, Flask, CA, Schiemann, WP (2011a) In vivo dual substrate bioluminesent imaging. J Vis Exp 56:4288–4301

    Google Scholar 

  • Wendt MK, Taylor MA, Schiemann BJ, Schiemann WP (2011b) Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell 22:2423–2435

    Article  PubMed  CAS  Google Scholar 

  • Wendt MK, Schiemann BJ, Parvani JG, Lee YH, Kang Y, Schiemann WP (2012a) TGF-β stimulates Pyk2 expression as part of an epithelial-mesenchymal transition program required for metastatic outgrowth of breast cancer. Oncogene Jun 28: doi 10.1038/onc.2012.230

    Google Scholar 

  • Wendt MK, Tian M, Schiemann WP (2012b) Deconstructing the mechanisms and consequences of TGF-β-induced EMT during cancer progression. Cell Tissue Res 347:85–101

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Duan DS, de Vries C, Peters KG, Johnson DE, Williams LT (1992) Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol 12:82–88

    PubMed  CAS  Google Scholar 

  • Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437:199–213

    Article  PubMed  CAS  Google Scholar 

  • Whittard JD, Craig SE, Mould AP et al (2002) E-cadherin is a ligand for integrin α2β1. Matrix Biol 21:525–532

    Article  PubMed  CAS  Google Scholar 

  • Wrighton KH, Lin X, Feng XH (2009) Phospho-control of TGF-β superfamily signaling. Cell Res 19:8–20

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Huang J, Ren X et al (2008) Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  PubMed  CAS  Google Scholar 

  • Zavadil J, Narasimhan M, Blumenberg M, Schneider RJ (2007) Transforming growth factor-β and microRNA:mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs 185:157–161

    Article  PubMed  CAS  Google Scholar 

  • Zutter MM (2007) Integrin-mediated adhesion: tipping the balance between chemosensitivity and chemoresistance. Adv Exp Med Biol 608:87–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Members of the Schiemann Laboratory are thanked for critical reading of the manuscript. W.P.S. was supported in part by grants from the National Institutes of Health (CA129359), the Department of Defense (BC084561), and pilot funding from the Case Comprehensive Cancer Center (P30 CA043703), while M.K.W. was supported by the National Institutes of Health (CA166140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Schiemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Wendt, M.K., Schiemann, W.P. (2013). The Multifunctional Roles of TGF-β in Navigating the Metastatic Cascade. In: Moustakas, A., Miyazawa, K. (eds) TGF-β in Human Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54409-8_7

Download citation

Publish with us

Policies and ethics