Shape-Memory Materials

  • Mitsuhiro Ebara
  • Yohei Kotsuchibashi
  • Koichiro UtoEmail author
  • Takao Aoyagi
  • Young-Jin Kim
  • Ravin Narain
  • Naokazu Idota
  • John M. Hoffman
Part of the NIMS Monographs book series (NIMSM)


Shape-memory materials are a class of “smart” materials that have the capability to change from a temporary shape to a memorized permanent shape upon application of an external stimulus. In particular, shape-memory polymers (SMPs) represent a cheap and efficient alternative to well-known metallic shape-memory alloys because they are relatively easy to manufacture and program. Thermally induced SMPs are the most extensively investigated group of SMPs. The use of SMPs as self-repairing or rewritable materials has found growing interest in environmentally friendly technologies. In this chapter, we review different types of shape-memory material, which have been developed in the last few decades.


Shape-memory polymers Shape-memory alloys Surface shape memory Permanent shape Temporary shape 


  1. 1.
    Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc 54:3819–3833. doi: 10.1021/ja01349a004 Google Scholar
  2. 2.
    Greninger AB, Mooradian VG (1938) Papers—strain transformation in metastable beta copper-zinc and beta copper-tin alloys (with discussion). Trans AIME 128:337–368Google Scholar
  3. 3.
    Chang LC, Read TA (1951) Plastic deformation and diffusionless phase changes in metals—the gold-cadmium beta-phase. T Am I Min Met Eng 191:47–52Google Scholar
  4. 4.
    Buehler WJ, Wiley RC, Gilfrich JV (1963) Effect of low-temperature phase changes on mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475 (1473 pages). doi: 10.1063/1.1729603
  5. 5.
    Vernon LB, Vernon HM (1941) Process of manufacturing articles of thermoplastic synthetic resins. US Patent 2234993Google Scholar
  6. 6.
    Vernon LB, Vernon HM (1941) Article formed of thermoplastic synthetic resins and process manufacturing the same. US Patent 2234993Google Scholar
  7. 7.
    Charlesby A (1960) Atomic radiation and polymers. vol 1, International series of monographs on radiation effects in materials. Pergamon Press, OxfordGoogle Scholar
  8. 8.
    Ota S (1981) Current status of irradiated heat-shrinkable tubing in Japan. Radiat Phys Chem 18:81–87. doi: 10.1016/0146-5724(81)90066-2 Google Scholar
  9. 9.
    Chen W, Xing K, Sun L (1983) The heat shrinking mechanism of polyethylene film. Radiat Phys Chem 22:593–601. doi: 10.1016/0146-5724(83)90068-7 Google Scholar
  10. 10.
    Machi S (1996) New trends of radiation processing applications. Radiat Phys Chem 47:333–336. doi: 10.1016/0969-806x(95)00125-H Google Scholar
  11. 11.
    Nakayama K (1990) Properties and application of shape memory. Polymer. Nippon Gomu Kyokaishi 63:529–534Google Scholar
  12. 12.
    Nakayama K (1991) Properties and applications of shape-memory polymers. Int Polym Sci Technol 18:T43–T48Google Scholar
  13. 13.
    Hayashi S, Kondo S, Kapadia P, Ushioda E (1995) Room-temperature-functional shape-memory polymers. Plast Eng 51:29–31Google Scholar
  14. 14.
    Ito K, Abe K, Li HL, Ujihira Y, Ishikawa N, Hayashi S (1996) Variation of free volume size and content of shape memory polymer polyurethane upon temperature studied by positron annihilation lifetime techniques and infrared spectroscopy. J Radioan Nucl Ch Ar 211:53–60. doi: 10.1007/Bf02036255 Google Scholar
  15. 15.
    Takahashi T, Hayashi N, Hayashi S (1996) Structure and properties of shape-memory polyurethane block copolymers. J Appl Polym Sci 60:1061–1069. doi: 10.1002/(Sici)1097-4628(19960516)60:7<1061:Aid-App18>3.0.Co;2-3 Google Scholar
  16. 16.
    Tobushi H, Hara H, Yamada E, Hayashi S (1996) Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater Struct 5:483–491. doi: 10.1088/0964-1726/5/4/012 Google Scholar
  17. 17.
    Tobushi H, Hashimoto T, Hayashi S, Yamada E (1997) Thermomechanical constitutive modeling in shape memory polymer of polyurethane series. J Intel Mat Syst Str 8:711–718. doi: 10.1177/1045389X9700800808 Google Scholar
  18. 18.
    Tobushi H, Okumura K, Endo M, Hayashi S (2001) Thermomechanical properties of polyurethane-shape memory polymer foam. J Intel Mat Syst Str 12:283–287. doi: 10.1106/Fnsx-Ap9v-Qp1r-Nmwv Google Scholar
  19. 19.
    Hirai T, Maruyama H, Suzuki T, Hayashi S (1992) Effect of chemical cross-linking under elongation on shape restoring of poly(vinyl alcohol) hydrogel. J Appl Polym Sci 46:1449–1451. doi: 10.1002/app.1992.070460815 Google Scholar
  20. 20.
    Hirai T, Maruyama H, Suzuki T, Hayashi S (1992) Shape memorizing properties of a hydrogel of poly(vinyl alcohol). J Appl Polym Sci 45:1849–1855. doi: 10.1002/app.1992.070451019 Google Scholar
  21. 21.
    He XW, Oishi Y, Takahara A, Kajiyama T (1996) Higher order structure and thermo-responsive properties of polymeric gel with crystalline side chains. Polym J 28:452–457. doi: 10.1295/polymj.28.452 Google Scholar
  22. 22.
    Matsuda A, Sato J, Yasunaga H, Osada Y (1994) Order-disorder transition of a hydrogel containing an n-alkyl acrylate. Macromolecules 27:7695–7698. doi: 10.1021/ma00104a027 Google Scholar
  23. 23.
    Osada Y, Matsuda A (1995) Shape-memory in hydrogels. Nature 376:219. doi: 10.1038/376219a0 Google Scholar
  24. 24.
    Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676. doi: 10.1126/science.1066102 Google Scholar
  25. 25.
    Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(ɛ-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci 98:842–847. doi: 10.1073/pnas.98.3.842 Google Scholar
  26. 26.
    Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558. doi: 10.1039/B615954k Google Scholar
  27. 27.
    Leng JS, Lan X, Liu YJ, Du SY (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135. doi: 10.1016/j.pmatsci.2011.03.001 Google Scholar
  28. 28.
    Behl M, Lendlein A (2007) Actively moving polymers. Soft Matter 3:58. doi: 10.1039/b610611k Google Scholar
  29. 29.
    Lendlein A (2010) Progress in actively moving polymers. J Mater Chem 20:3332–3334. doi: 10.1039/c004361n Google Scholar
  30. 30.
    Shirai Y, Hayashi S, Kaisha MJK (1988) Development of polymeric shape memory material. Mitsubishi Heavy IndustriesGoogle Scholar
  31. 31.
    Tobushi H, Hayashi S, Kojima S (1992) Mechanical-properties of shape memory polymer of polyurethane series—(basic characteristics of stress-strain-temperature relationship). Jsme Int J I-Solid M 35:296–302Google Scholar
  32. 32.
    Kobayashi K, Hayashi S (1992) Woven fabric made of shape memory polymer. US Patent 5128197Google Scholar
  33. 33.
    Hayashi S, Tasaka Y, Hayashi N, Akita Y (2004) Development of smart polymer materials and its various applications. Mitsubishi Heavy Industries, Ltd. Technical Review 41:1–3Google Scholar
  34. 34.
    Lin JR, Chen LW (1998) Study on shape-memory behavior of polyether-based polyurethanes. I. Influence of the hard-segment content. J Appl Polym Sci 69:1563–1574. doi: 10.1002/(Sici)1097-4628(19980822)69:8<1563:Aid-App11>3.0.Co;2-W Google Scholar
  35. 35.
    Lin JR, Chen LW (1998) Study on shape-memory behavior of polyether-based polyurethanes. II. Influence of soft-segment molecular weight. J Appl Polym Sci 69:1575–1586. doi: 10.1002/(Sici)1097-4628(19980822)69:8<1575:Aid-App12>3.0.Co;2-U Google Scholar
  36. 36.
    Sakurai K, Takahashi T (1989) Strain-Induced Crystallization in Polynorbornene. J Appl Polym Sci 38:1191–1194. doi: 10.1002/app.1989.070380616 Google Scholar
  37. 37.
    Sakurai K, Kashiwagi T, Takahashi T (1993) Crystal-structure of polynorbornene. J Appl Polym Sci 47:937–940. doi: 10.1002/app.1993.070470521 Google Scholar
  38. 38.
    Jeon HG, Mather PT, Haddad TS (2000) Shape memory and nanostructure in poly(norbornyl-POSS) copolymers. Polym Int 49:453–457. doi: 10.1002/(Sici)1097-0126(200005)49:5<453:Aid-Pi332>3.3.Co;2-8 Google Scholar
  39. 39.
    Haddad TS, Lichtenhan JD (1996) Hybrid organic−inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 29:7302–7304. doi: 10.1021/ma960609d Google Scholar
  40. 40.
    Lee A, Lichtenhan JD (1998) Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31:4970–4974. doi: 10.1021/ma9800764 Google Scholar
  41. 41.
    Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD (1999) Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 32:1194–1203. doi: 10.1021/Ma981210n Google Scholar
  42. 42.
    Haddad TS, Mather PT, Jeon HG, Romo-Uribe A, Lichtenhan JD (1998) Thermoplastics modified with nanoscale inorganic macromers. Abstr Pap Am Chem S 216:U322–U322Google Scholar
  43. 43.
    Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD (1998) Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. J Polym Sci Pol Phys 36:1857–1872. doi: 10.1002/(Sici)1099-0488(199808)36:11<1857:Aid-Polb7>3.3.Co;2-7 Google Scholar
  44. 44.
    Campo CJ, Mather PT (2005) PVDF: PMMA shape memory blends: effect of short carbon fiber addition. Abstr Pap Am Chem S 230:U3760–U3761Google Scholar
  45. 45.
    Liu C, Mather PT (2003) Thermomechanical characterization of blends of poly(vinyl acetate) with semicrystalline polymers for shape memory applications. In: Proceedings of the annual technical conference—society of plastics engineers, ANTEC 2003, vol 2, pp 1962–1966Google Scholar
  46. 46.
    Sakurai K, Shirakawa Y, Kashiwagi T, Takahashi T (1994) Crystal transformation of styrene-butadiene block copolymer. Polymer 35:4238–4239. doi: 10.1016/0032-3861(94)90602-5 Google Scholar
  47. 47.
    Sakurai K, Tanaka H, Ogawa N, Takahashi T (1997) Shape-memorizable styrene-butadiene block copolymer 1. Thermal and mechanical behaviors and structural change with deformation. J Macromol Sci, Phys 36:703–716. doi: 10.1080/00222349708212397 Google Scholar
  48. 48.
    Ikematsu T, Kishimoto Y, Karaushi M (1990) Block copolymer. Bumpers with good shape memory. Japan Patent 02022355 Google Scholar
  49. 49.
    Luo XL, Zhang XY, Wang MT, Ma DH, Xu M, Li FK (1997) Thermally stimulated shape-memory behavior of ethylene oxide ethylene terephthalate segmented copolymer. J Appl Polym Sci 64:2433–2440. doi: 10.1002/(Sici)1097-4628(19970620)64:12<2433:Aid-App17>3.0.Co;2-1 Google Scholar
  50. 50.
    Wang MT, Luo XL, Zhang XY, Ma DZ (1997) Shape memory properties in poly(ethylene oxide)-poly(ethylene terephthalate) copolymers. Polym Advan Technol 8:136–139. doi: 10.1002/(Sici)1099-1581(199703)8:3<136:Aid-Pat621>3.0.Co;2-I Google Scholar
  51. 51.
    Wang M, Zhang L (1999) Recovery as a measure of oriented crystalline structure in poly(ether ester)s based on poly(ethylene oxide) and poly(ethylene terephthalate) used as shape memory polymers. J Polym Sci, Part B: Polym Phys 37:101–112. doi: 10.1002/(sici)1099-0488(19990115)37:2<101:aid-polb1>;2-x Google Scholar
  52. 52.
    Wang MT, Luo XL, Ma DZ (1998) Dynamic mechanical behavior in the ethylene terephthalate ethylene oxide copolymer with long soft segment as a shape memory material. Eur Polym J 34:1–5. doi: 10.1016/S0014-3057(97)00082-7 Google Scholar
  53. 53.
    VanCaeter P, Goethals EJ, Gancheva V, Velichkova R (1997) Synthesis and bulk properties of poly(tetrahydrofuran)-poly(2-methyl-2-oxazoline) ABA triblock copolymers. Polym Bull 39:589–596. doi: 10.1007/s002890050190 Google Scholar
  54. 54.
    Kim BK, Lee SY, Xu M (1996) Polyurethanes having shape memory effects. Polymer 37:5781–5793. doi: 10.1016/S0032-3861(96)00442-9 Google Scholar
  55. 55.
    Li FK, Zhang X, Hou JN, Xu M, Lu XL, Ma DZ, Kim BK (1997) Studies on thermally stimulated shape memory effect of segmented polyurethanes. J Appl Polym Sci 64:1511–1516. doi: 10.1002/(Sici)1097-4628(19970523)64:8<1511:Aid-App8>3.0.Co;2-K Google Scholar
  56. 56.
    Li FK, Hou JN, Zhu W, Zhang X, Xu M, Luo XL, Ma DZ, Kim BK (1996) Crystallinity and morphology of segmented polyurethanes with different soft-segment length. J Appl Polym Sci 62:631–638. doi: 10.1002/(Sici)1097-4628(19961024)62:4<631:Aid-App6>3.0.Co;2-U Google Scholar
  57. 57.
    Kim BK, Lee SY, Lee JS, Baek SH, Choi YJ, Lee JO, Xu M (1998) Polyurethane ionomers having shape memory effects. Polymer 39:2803–2808. doi: 10.1016/S0032-3861(97)00616-2 Google Scholar
  58. 58.
    Jeong HM, Lee JB, Lee SY, Kim BK (2000) Shape memory polyurethane containing mesogenic moiety. J Mater Sci 35:279–283. doi: 10.1023/A:1004728814128 Google Scholar
  59. 59.
    Weiss RA, Fitzgerald JJ, Kim D (1991) Viscoelastic behavior of plasticized sulfonated polystyrene ionomers. Macromolecules 24:1064–1070. doi: 10.1021/Ma00005a014 Google Scholar
  60. 60.
    Weiss RA, Fitzgerald JJ, Kim D (1991) Viscoelastic behavior of lightly sulfonated polystyrene ionomers. Macromolecules 24:1071–1076. doi: 10.1021/Ma00005a015 Google Scholar
  61. 61.
    Skákalová V, Lukeš V, Breza M (1997) Shape memory effect of dehydrochlorinated crosslinked poly(vinyl chloride). Macromol Chem Phys 198:3161–3172. doi: 10.1002/macp.1997.021981014 Google Scholar
  62. 62.
    Palma G, Carenza M (1970) Degradation of poly(vinyl chloride). I. Kinetics of thermal and radiation-induced dehydrochlorination reactions at low temperatures. J Appl Polym Sci 14:1737–1754. doi: 10.1002/app.1970.070140708 Google Scholar
  63. 63.
    Simon P (1994) Polymer degradation by elimination of small molecules. Angew Makromol Chem 216:187–203. doi: 10.1002/apmc.1994.052160113 Google Scholar
  64. 64.
    Li FK, Larock RC (2000) New soybean oil-styrene-divinylbenzene thermosetting copolymers. II. Dynamic mechanical properties. J Polym Sci Pol Phys 38:2721–2738. doi: 10.1002/1099-0488(20001101)38:21<2721:Aid-Polb30>3.0.Co;2-D Google Scholar
  65. 65.
    Li F, Hanson MV, Larock RC (2001) Soybean oil-divinylbenzene thermosetting polymers: synthesis, structure, properties and their relationships. Polymer 42:1567–1579. doi: 10.1016/S0032-3861(00)00546-2 Google Scholar
  66. 66.
    Li FK, Larock RC (2002) New soybean oil-styrene-divinylbenzene thermosetting copolymers—IV. Good damping properties. Polym Advan Technol 13:436–449. doi: 10.1002/Pat.206 Google Scholar
  67. 67.
    Li FK, Larock RC (2002) New soybean oil-styrene-divinylbenzene thermosetting copolymers. V. shape memory effect. J Appl Polym Sci 84:1533–1543. doi: 10.1002/App.10493 Google Scholar
  68. 68.
    Li FK, Larock RC (2003) New soybean oil-styrene-divinylbenzene thermosetting copolymers. VI. Time-temperature-transformation cure diagram and the effect of curing conditions on the thermoset properties. Polym Int 52:126–132. doi: 10.1002/Pi.1060 Google Scholar
  69. 69.
    Alteheld A, Feng YK, Kelch S, Lendlein A (2005) Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew Chem Int Edit 44:1188–1192. doi: 10.1002/anie.200461360 Google Scholar
  70. 70.
    Kelch S, Choi NY, Wang Z, Lendlein A (2008) Amorphous, elastic AB copolymer networks from acrylates and poly[(l-lactide)-ran-glycolide]dimethacrylates. Adv Eng Mater 10:494–502. doi: 10.1002/adem.200700339 Google Scholar
  71. 71.
    Irie M (1998) Shape memory polymers. Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  72. 72.
    Liu CD, Chun SB, Mather PT, Zheng L, Haley EH, Coughlin EB (2002) Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior. Macromolecules 35:9868–9874. doi: 10.1021/Ma021141j Google Scholar
  73. 73.
    Mather PT, Liu C, Coughlin EB, Chun SB (2004) Crosslinked polycyclooctene. US Patent US20040122184 A1Google Scholar
  74. 74.
    Arditti SJ, Avedikian SZ, Bernstein BS (1971) Articles with polymeric memory. US Patent 3563973Google Scholar
  75. 75.
    Hosemann R, Lobodaca J, Cackovic H (1972) Affine deformation of linear polyethylene. Z Naturforsch Pt A A 27:478Google Scholar
  76. 76.
    Lendlein A, Schmidt AM, Schroeter M, Langer R (2005) Shape-memory polymer networks from oligo(epsilon-caprolactone)dimethacrylates. J Polym Sci Pol Chem 43:1369–1381. doi: 10.1002/Pola.20598 Google Scholar
  77. 77.
    Zhu GM, Xu QY, Liang GZ, Zhou HF (2005) Shape-memory behaviors of sensitizing radiation-crosslinked polycaprolactone with polyfunctional poly(ester acrylate). J Appl Polym Sci 95:634–639. doi: 10.1002/app.20989 Google Scholar
  78. 78.
    Nagata M, Kitazima I (2006) Photocurable biodegradable poly(epsilon-caprolactone)/poly(ethylene glycol) multiblock copolymers showing shape-memory properties. Colloid Polym Sci 284:380–386. doi: 10.1007/s00396-005-1393-3 Google Scholar
  79. 79.
    Zhu G, Xu S, Wang J, Zhang L (2006) Shape memory behaviour of radiation-crosslinked PCL/PMVS blends. Radiat Phys Chem 75:443–448. doi: 10.1016/j.radphyschem.2005.10.004 Google Scholar
  80. 80.
    Kunzelman J, Chung T, Mather PT, Weder C (2008) Shape memory polymers with built-in threshold temperature sensors. J Mater Chem 18:1082–1086. doi: 10.1039/B718445J Google Scholar
  81. 81.
    Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120. doi: 10.1038/nmat1059 Google Scholar
  82. 82.
    Lendlein A, Kelch S (2005) Degradable, multifunctional polymeric biomaterials with shape-memory. Mater Sci Forum 492–493:219–223. doi: 10.4028/ Google Scholar
  83. 83.
    Kelch S, Steuer S, Schmidt AM, Lendlein A (2007) Shape-memory polymer networks from oligo[(ε-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 8:1018–1027. doi: 10.1021/bm0610370 Google Scholar
  84. 84.
    Choi NY, Lendlein A (2007) Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. Soft Matter 3:901–909. doi: 10.1039/B702515g Google Scholar
  85. 85.
    Behl M, Ridder U, Feng Y, Kelch S, Lendlein A (2009) Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter 5:676–684. doi: 10.1039/B810583A Google Scholar
  86. 86.
    Lv H, Leng J, Du S (2008) Electro-induced shape-memory polymer nanocomposite containing conductive particles and short fibers. Behavior Mech Multifunct Compos Mater 6929:69291L–69298L. doi: 10.1117/12.775736
  87. 87.
    Leng J, Lv H, Liu Y, Du S (2007) Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl Phys Lett 91:144105 (144103 pages). doi: 10.1063/1.2790497
  88. 88.
    Liu Y, Lv H, Lan X, Leng J, Du S (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 69:2064–2068. doi: 10.1016/j.compscitech.2008.08.016 Google Scholar
  89. 89.
    Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410. doi: 10.1002/adma.200904447 Google Scholar
  90. 90.
    Lendlein A, Jiang HY, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882. doi: 10.1038/Nature03496 Google Scholar
  91. 91.
    Jiang HY, Kelch S, Lendlein A (2006) Polymers move in response to light. Adv Mater 18:1471–1475. doi: 10.1002/adma.200502266 Google Scholar
  92. 92.
    Li MH, Keller P, Li B, Wang XG, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15:569–572. doi: 10.1002/adma.200304552 Google Scholar
  93. 93.
    Scott TF, Draughon RB, Bowman CN (2006) Actuation in crosslinked polymers via photoinduced stress relaxation. Adv Mater 18:2128–2132. doi: 10.1002/adma.200600379 Google Scholar
  94. 94.
    Scott TF, Schneider AD, Cook WD, Bowman CN (2005) Photoinduced plasticity in cross-linked polymers. Science 308:1615–1617. doi: 10.1126/science.1110505 Google Scholar
  95. 95.
    Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl Phys Lett 86:114105 (114103 pages). doi: 10.1063/1.1880448
  96. 96.
    Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H (2012) Cooling-/water-responsive shape memory hybrids. Compos Sci Technol 72:1178–1182. doi: 10.1016/j.compscitech.2012.03.027 Google Scholar
  97. 97.
    Fan K, Huang WM, Wang CC, Ding Z, Zhao Y, Purnawali H, Liew KC, Zheng LX (2011) Water-responsive shape memory hybrid: design concept and demonstration. Express Polym Lett 5:409–416. doi: 10.3144/expresspolymlett.2011.40 Google Scholar
  98. 98.
    Jung YC, So HH, Cho JW (2006) Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane. J Macromol Sci B 45:453–461. doi: 10.1080/00222340600767513 Google Scholar
  99. 99.
    Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. P Natl Acad Sci USA 103:3540–3545. doi: 10.1073/pnas.0600079103 Google Scholar
  100. 100.
    Buckley PR, McKinley GH, Wilson TS, Small W, Benett WJ, Bearinger JP, McElfresh MW, Maitland DJ (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE T Bio-Med Eng 53:2075–2083. doi: 10.1109/Tbme.2006.877113 Google Scholar
  101. 101.
    Yang D, Huang W, He XH, Xie MR (2012) Electromagnetic activation of a shape memory copolymer matrix incorporating ferromagnetic nanoparticles. Polym Int 61:38–42. doi: 10.1002/Pi.3188 Google Scholar
  102. 102.
    Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Comm 27:1168–1172. doi: 10.1002/marc.200600225 Google Scholar
  103. 103.
    He ZW, Satarkar N, Xie T, Cheng YT, Hilt JZ (2011) Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations. Adv Mater 23:3192–3196. doi: 10.1002/adma.201100646 Google Scholar
  104. 104.
    Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415. doi: 10.1039/B923000a Google Scholar
  105. 105.
    Hazelton CS, Arzberger SC, Lake MS, Munshi NA (2007) RF actuation of a thermoset shape memory polymer with embedded magnetoelectroelastic particles. J Adv Mater-Covina 39:35–39Google Scholar
  106. 106.
    Leng JS, Wu XL, Liu YJ (2009) Infrared light-active shape memory polymer filled with nanocarbon particles. J Appl Polym Sci 114:2455–2460. doi: 10.1002/App.30724 Google Scholar
  107. 107.
    Gall K, Mikulas M, Munshi NA, Beavers F, Tupper M (2000) Carbon fiber reinforced shape memory polymer composites. J Intel Mat Syst Str 11:877–886. doi: 10.1106/EJGR-EWNM-6CLX-3X2M Google Scholar
  108. 108.
    Liang C, Rogers CA, Malafeew E (1997) Investigation of shape memory polymers and their hybrid composites. J Intel Mat Syst Str 8:380–386. doi: 10.1177/1045389x9700800411 Google Scholar
  109. 109.
    Moad G, Solomon DH (2006) The chemistry of radical polymerization. Elsevier, AmsterdamGoogle Scholar
  110. 110.
    Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed Engl 41:2035–2057. doi: 10.1002/1521-3773(20020617)41:12<2034:AID-ANIE2034>3.0.CO;2-M Google Scholar
  111. 111.
    Aoyagi T, Miyata F, Nagase Y (1994) Preparation of cross-linked aliphatic polyester and application to thermoresponsive material. J Control Release 32:87–96. doi: 10.1016/0168-3659(94)90228-3 Google Scholar
  112. 112.
    Miyasako H, Yamamoto K, Nakao A, Aoyagi T (2007) Preparation of cross-linked poly[(epsilon-caprolactone)-co-lactide] and biocompatibility studies for tissue engineering materials. Macromol Biosci 7:76–83. doi: 10.1002/mabi.200600188 Google Scholar
  113. 113.
    Miyasako H, Yamamoto K, Aoyagi K (2008) Preparation, characterization and biocompatibility study of the scaffold prototype derived from cross-linked poly [(epsilon-caprolactone)-co-lactide] for tissue engineering materials. Polym J 40:806–812. doi: 10.1295/polymj.PJ2008036 Google Scholar
  114. 114.
    Muroya T, Yamamoto K, Aoyagi T (2009) Degradation of cross-linked aliphatic polyester composed of poly(epsilon-caprolactone-co-d, l-lactide) depending on the thermal properties. Polym Degrad Stabil 94:285–290. doi: 10.1016/j.polymdegradstab.2008.12.014 Google Scholar
  115. 115.
    Smith TL (1974) Strength of segmented and triblock elastomers. Abstr Pap Am Chem S:8Google Scholar
  116. 116.
    Smith TL (1976) Factors affecting strength of elastomers. Abstr Pap Am Chem S:37Google Scholar
  117. 117.
    Smith TL (1977) Strength of elastomers—perspective. Polym Eng Sci 17:129–143. doi: 10.1002/pen.760170302 Google Scholar
  118. 118.
    Smith TL (1978) Strength of elastomers—perspective. Rubber Chem Technol 51:225–252. doi: 10.5254/1.3545831 Google Scholar
  119. 119.
    Ji FL, Hu JL, Li TC, Wong YW (2007) Morphology and shape memory effect of segmented polyurethanes. Part I: with crystalline reversible phase. Polymer 48:5133–5145. doi: 10.1016/j.polymer.2007.06.032 Google Scholar
  120. 120.
    Ji FL, Hu JL, Han JP (2011) Shape memory polyurethane-ureas based on isophorone diisocyanate. High Perform Polym 23:177–187. doi: 10.1177/0954008311398323 Google Scholar
  121. 121.
    Chen SJ, Hu JL, Liu YQ, Liem HM, Zhu Y, Liu YJ (2007) Effect of SSL and HSC on morphology and properties of PHA based SMPU synthesized by bulk polymerization method. J Polym Sci Pol Phys 45:444–454. doi: 10.1002/Polb.21046 Google Scholar
  122. 122.
    Korley LTJ, Pate BD, Thomas EL, Hammond PT (2006) Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer 47:3073–3082. doi: 10.1016/j.polymer.2006.02.093 Google Scholar
  123. 123.
    Luo XL, Zhao MC, Wang MZ, Ding LN, Ma DZ (2000) Thermally stimulated shape memory behavior of (ethylene oxide-butylene terephthalate) segmented copolymer. Chin J Polym Sci 18:357–361Google Scholar
  124. 124.
    Li JH, Viveros JA, Wrue MH, Anthamatten M (2007) Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv Mater 19:2851–2855. doi: 10.1002/adma.200602260 Google Scholar
  125. 125.
    del Rio E, Lligadas G, Ronda JC, Galia M, Cadiz V, Meier MAR (2011) Shape Memory Polyurethanes from Renewable Polyols Obtained by ATMET Polymerization of Glyceryl Triundec-10-enoate and 10-Undecenol. Macromol Chem Phys 212:1392–1399. doi: 10.1002/macp.201100025 Google Scholar
  126. 126.
    Yang D, Huang W, Yu JH, Jiang JS, Zhang LY, Xie MR (2010) A novel shape memory polynorbornene functionalized with poly(epsilon-caprolactone) side chain and cyano group through ring-opening metathesis polymerization. Polymer 51:5100–5106. doi: 10.1016/j.polymer.2010.09.009 Google Scholar
  127. 127.
    Safranski DL, Gall K (2008) Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks. Polymer 49:4446–4455. doi: 10.1016/j.polymer.2008.07.060 Google Scholar
  128. 128.
    Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K (2008) Strong, tailored, biocompatible shape-memory polymer networks. Adv Funct Mater 18:2428–2435. doi: 10.1002/adfm.200701049 Google Scholar
  129. 129.
    Rickert D, Lendlein A, Schmidt AM, Kelch S, Roehlke W, Fuhrmann R, Franke RP (2003) In vitro cytotoxicity testing of AB-polymer networks based on oligo(ϵ-caprolactone) segments after different sterilization techniques. J Biomed Mater Res B Appl Biomater 67B:722–731. doi: 10.1002/jbm.b.10069 Google Scholar
  130. 130.
    Uto K, Yamamoto K, Hirase S, Aoyagi T (2006) Temperature-responsive cross-linked poly(epsilon-caprolactone) membrane that functions near body temperature. J Control Release 110:408–413. doi: 10.1016/j.jconrel.2005.10.024 Google Scholar
  131. 131.
    Zhu G, Liang G, Xu Q, Yu Q (2003) Shape-memory effects of radiation crosslinked poly(epsilon-caprolactone). J Appl Polym Sci 90:1589–1595. doi: 10.1002/App.12736 Google Scholar
  132. 132.
    Ware T, Voit W, Gall K (2010) Effects of sensitizer length on radiation crosslinked shape-memory polymers. Radiat Phys Chem 79:446–453. doi: 10.1016/j.radphyschem.2009.10.006 Google Scholar
  133. 133.
    Kirk WP, Wouters KL, Basit NA, MacDonnell FM, Tao M, Clark KP (2003) Electrical and optical effects in molecular nanoscopic-sized building blocks. Physica E 19:126–132. doi: 10.1016/S1386-9477(03)00298-4 Google Scholar
  134. 134.
    Watts PCP, Hsu WK (2003) Behaviours of embedded carbon nanotubes during film cracking. Nanotechnology 14:L7–L10. doi: 10.1088/0957-4484/14/5/101 Google Scholar
  135. 135.
    Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207:1773–1780. doi: 10.1002/macp.200600266 Google Scholar
  136. 136.
    Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Comm 26:412–416. doi: 10.1002/marc.200400492 Google Scholar
  137. 137.
    Chen W, Tao XM (2005) Self-organizing alignment of carbon nanotubes in thermoplastic polyurethane. Macromol Rapid Comm 26:1763–1767. doi: 10.1002/marc.200500531 Google Scholar
  138. 138.
    Meng QH, Hu JL (2008) Self-organizing alignment of carbon nanotube in shape memory segmented fiber prepared by in situ polymerization and melt spinning. Compos Part a-Appl S 39:314–321. doi: 10.1016/j.compositesa.2007.10.007 Google Scholar
  139. 139.
    Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40:7400–7406. doi: 10.1021/Ma0711792 Google Scholar
  140. 140.
    Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385. doi: 10.1016/j.carbon.2005.01.007 Google Scholar
  141. 141.
    Bal S (2007) Influence of dispersion states of carbon nanotubes on mechanical and electrical properties of epoxy nanocomposites. J Sci Ind Res India 66:752–756Google Scholar
  142. 142.
    Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937–941. doi: 10.1002/(Sici)1521-4095(199908)11:11<937:Aid-Adma937>3.0.Co;2-9 Google Scholar
  143. 143.
    Bin YZ, Kitanaka M, Zhu D, Matsuo M (2003) Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36:6213–6219. doi: 10.1021/Ma0301956 Google Scholar
  144. 144.
    Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 22:2387–2399. doi: 10.1016/j.bios.2006.12.025 Google Scholar
  145. 145.
    Wen JY, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol-gel approach. Chem Mater 8:1667–1681. doi: 10.1021/Cm9601143 Google Scholar
  146. 146.
    Diaz-Garcia ME, Laino RB (2005) Molecular imprinting in sol-gel materials: recent developments and applications. Microchim Acta 149:19–36. doi: 10.1007/s00604-004-0274-7 Google Scholar
  147. 147.
    Jin Z, Pramoda KP, Xu G, Goh SH (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem Phys Lett 337:43–47. doi: 10.1016/S0009-2614(01)00186-5 Google Scholar
  148. 148.
    Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403. doi: 10.1002/1439-2054(20020601)287:6<395:Aid-Mame395>3.0.Co;2-S Google Scholar
  149. 149.
    Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid St M 8:31–37. doi: 10.1016/j.cossms.2003.10.006 Google Scholar
  150. 150.
    Zhang WD, Shen L, Phang IY, Liu TX (2004) Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37:256–259. doi: 10.1021/Ma035594f Google Scholar
  151. 151.
    Cadek M, Coleman JN, Ryan KP, Nicolosi V, Bister G, Fonseca A, Nagy JB, Szostak K, Beguin F, Blau WJ (2004) Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett 4:353–356. doi: 10.1021/Nl035009o Google Scholar
  152. 152.
    Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15:4470–4475. doi: 10.1021/Cm034243c Google Scholar
  153. 153.
    Sahoo NG, Jung YC, Yoo HJ, Cho JW (2007) Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos Sci Technol 67:1920–1929. doi: 10.1016/j.compscitech.2006.10.013 Google Scholar
  154. 154.
    Sahoo NG, Jung YC, Cho JW (2007) Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater Manuf Process 22:419–423. doi: 10.1080/10426910701232857 Google Scholar
  155. 155.
    Yoo HJ, Jung YC, Sahoo NG, Cho JW (2006) Polyurethane-carbon nanotube nanocomposites prepared by in situ polymerization with electroactive shape memory. J Macromol Sci B 45:441–451. doi: 10.1080/00222340600767471 Google Scholar
  156. 156.
    An KH, Jeong SY, Hwang HR, Lee YH (2004) Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv Mater 16:1005. doi: 10.1002/adma.200306176
  157. 157.
    Xia HS, Song M (2006) Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites. J Mater Chem 16:1843–1851. doi: 10.1039/B601152g Google Scholar
  158. 158.
    Xia HS, Song M (2005) Preparation and characterization of polyurethane-carbon nanotube composites. Soft Matter 1:386–394. doi: 10.1039/B509038e Google Scholar
  159. 159.
    Guo Z, Lee SE, Kim H, Park S, Hahn HT, Karki AB, Young DP (2009) Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. Acta Mater 57:267–277. doi: 10.1016/j.actamat.2008.09.024 Google Scholar
  160. 160.
    Guo ZH, Pereira T, Choi O, Wang Y, Hahn HT (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16:2800–2808. doi: 10.1039/B603020c Google Scholar
  161. 161.
    Jung YC, Sahoo NG, Cho JW (2006) Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers. Macromol Rapid Comm 27:126–131. doi: 10.1002/marc.200500658 Google Scholar
  162. 162.
    Cui J, Wang WP, You YZ, Liu CH, Wang PH (2004) Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization. Polymer 45:8717–8721. doi: 10.1016/j.polymer.2004.10.068 Google Scholar
  163. 163.
    Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat Sci Eng R 49:89–112. doi: 10.1016/j.mser.2005.04.002 Google Scholar
  164. 164.
    Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112. doi: 10.1016/j.progpolymsci.2007.07.004 Google Scholar
  165. 165.
    Flory PJ (1953) Principles of polymer chemistry: Paul J. Cornell University, FloryGoogle Scholar
  166. 166.
    GdC Vasconcelos, Mazur RL, Botelho EC, Rezende MC, Costa ML (2010) Evaluation of crystallization kinetics of polymer of poly (ether-ketone-ketone) and poly (ether-ether-ketone) by DSC. J Aerosp Technol Manage 2:155–162. doi: 10.5028/jatm.2010.02026310 Google Scholar
  167. 167.
    Nagahama K, Ueda Y, Ouchi T, Ohya Y (2009) Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release. Biomacromolecules 10:1789–1794. doi: 10.1021/bm9002078 Google Scholar
  168. 168.
    Weng S, Xia Z, Chen J, Gong L (2013) Shape memory properties of polycaprolactone-based polyurethanes prepared by reactive extrusion. J Appl Polym Sci 127:748–759. doi: 10.1002/app.37768 Google Scholar
  169. 169.
    DiOrio AM, Luo X, Lee KM, Mather PT (2011) A functionally graded shape memory polymer. Soft Matter 7:68–74. doi: 10.1039/C0SM00487A Google Scholar
  170. 170.
    Song S, Feng J, Wu P (2011) A new strategy to prepare polymer-based shape memory elastomers. Macromol Rapid Comm 32:1569–1575. doi: 10.1002/marc.201100298 Google Scholar
  171. 171.
    Luo X, Mather PT (2009) Preparation and characterization of shape memory elastomeric composites. Macromolecules 42:7251–7253. doi: 10.1021/ma9015888 Google Scholar
  172. 172.
    Luo X, Mather PT (2013) Design strategies for shape memory polymers. Curr Opin Chem Eng 2:103–111. doi: 10.1016/j.coche.2012.10.006 Google Scholar
  173. 173.
    Leng JS, Lan X, Liu YJ, Du SY, Huang WM, Liu N, Phee SJ, Yuan Q (2008) Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl Phys Lett 92:014104 (14103 pages). doi: 10.1063/1.2829388
  174. 174.
    Ping P, Wang W, Chen X, Jing X (2007) The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes. J Polym Sci, Part B: Polym Phys 45:557–570. doi: 10.1002/polb.20974 Google Scholar
  175. 175.
    Waletzko RS, Korley LTJ, Pate BD, Thomas EL, Hammond PT (2009) Role of increased crystallinity in deformation-induced structure of segmented thermoplastic polyurethane elastomers with PEO and PEO−PPO−PEO soft segments and HDI hard segments. Macromolecules 42:2041–2053. doi: 10.1021/ma8022052 Google Scholar
  176. 176.
    D’Hollander S, Gommes CJ, Mens R, Adriaensens P, Goderis B, Du Prez F (2010) Modeling the morphology and mechanical behavior of shape memory polyurethanes based on solid-state NMR and synchrotron SAXS/WAXD. J Mater Chem 20:3475. doi: 10.1039/b923734h Google Scholar
  177. 177.
    Tobushi H, Okumura K, Hayashi S, Ito N (2001) Thermomechanical constitutive model of shape memory polymer. Mech Mater 33:545–554. doi: 10.1016/S0167-6636(01)00075-8 Google Scholar
  178. 178.
    Lin HC, Wu SK (1992) Strengthening effect on shape recovery characteristic of the equiatomic TiNi alloy. Scr Metall Mater 26:59–62. doi: 10.1016/0956-716x(92)90369-p Google Scholar
  179. 179.
    Gall K, Yakacki CM, Liu Y, Shandas R, Willett N, Anseth KS (2005) Thermomechanics of the shape memory effect in polymers for biomedical applications. J Biomed Mater Res, Part A 73A:339–348. doi: 10.1002/jbm.a.30296 Google Scholar
  180. 180.
    Liu Y, Gall K, Dunn ML, McCluskey P (2003) Thermomechanical recovery couplings of shape memory polymers in flexure. Smart Mater Struct 12:947–954. doi: 10.1088/0964-1726/12/6/012 Google Scholar
  181. 181.
    Capaccio G, Ward IM (1982) Shrinkage, shrinkage force and the structure of ultra high modulus polyethylenes. Colloid Polym Sci 260:46–55. doi: 10.1007/Bf01447675 Google Scholar
  182. 182.
    Chowdhury SR, Mishra JK, Das CK (2000) Shrinkability and microstructural properties of composites based on low-density polyethylene (LDPE) and polyurethane (PU) rubber. J Thermoplast Compos 13:400–416. doi: 10.1106/V6pp-X3d2-Rgdk-Ft7p Google Scholar
  183. 183.
    Chowdhury SR, Mishra JK, Das CK (2000) Structure, shrinkability and thermal property correlations of ethylene vinyl acetate (EVA)/carboxylated nitrile rubber (XNBR) polymer blends. Polym Degrad Stabil 70:199–204. doi: 10.1016/S0141-3910(00)00107-5 Google Scholar
  184. 184.
    Bellin I, Kelch S, Langer R, Lendlein A (2006) Polymeric triple-shape materials. P Natl Acad Sci USA 103:18043–18047. doi: 10.1073/pnas.0608586103 Google Scholar
  185. 185.
    Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000. doi: 10.1016/j.polymer.2011.08.003 Google Scholar
  186. 186.
    Xie T, Xiao X, Cheng Y-T (2009) Revealing triple-shape memory effect by polymer bilayers. Macromol Rapid Comm 30:1823–1827. doi: 10.1002/marc.200900409 Google Scholar
  187. 187.
    Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270. doi: 10.1038/nature08863 Google Scholar
  188. 188.
    Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75. doi: 10.1146/annurev.bioeng.6.040803.140027 Google Scholar
  189. 189.
    Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492. doi: 10.1038/nature02388 Google Scholar
  190. 190.
    Shmulewitz A, Langer R, Patton J (2006) Convergence in biomedical technology. Nat Biotechnol 24:277–280. doi: 10.1038/Nbt0306-277a Google Scholar
  191. 191.
    Karp JM, Langer R (2007) Development and therapeutic applications of advanced biomaterials. Curr Opin Biotech 18:454–459. doi: 10.1016/j.copbio.2007.09.008 Google Scholar
  192. 192.
    Langer R (1998) Drug delivery and targeting. Nature 392(suppl):5–10Google Scholar
  193. 193.
    Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28:2255–2263. doi: 10.1016/j.biomaterials.2007.01.030 Google Scholar
  194. 194.
    Small W, Buckley PR, Wilson TS, Loge JM, Maitland KD, Maitland DJ (2008) Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer. J Biomed Opt 13:024018. doi: 10.1117/1.2904952 Google Scholar
  195. 195.
    Baer G, Small W, Wilson T, Benett W, Matthews D, Hartman J, Maitland D (2007) Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed Eng Online 6:43. doi: 10.1186/1475-925x-6-43 Google Scholar
  196. 196.
    Yakacki CM, Satarkar NS, Gall K, Likos R, Hilt JZ (2009) Shape-memory polymer networks with Fe3O4 nanoparticles for remote activation. J Appl Polym Sci 112:3166–3176. doi: 10.1002/App.29845 Google Scholar
  197. 197.
    Sokolowski W, Metcalfe A, Hayashi S, Yahia L, Raymond J (2007) Medical applications of shape memory polymers. Biomed Mater 2:S23–S27. doi: 10.1088/1748-6041/2/1/S04 Google Scholar
  198. 198.
    Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L (1987) Intravascular stents to prevent occlusion and restenosis after trans-luminal angioplasty. New Engl J Med 316:701–706. doi: 10.1056/Nejm198703193161201 Google Scholar
  199. 199.
    O’Brien B, Carroll W (2009) The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: A review. Acta Biomater 5:945–958. doi: 10.1016/j.actbio.2008.11.012 Google Scholar
  200. 200.
    Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, Komori H, Tsuji T, Motohara S, Uehata H (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404. doi: 10.1161/01.CIR.102.4.399 Google Scholar
  201. 201.
    Tsuji T, Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsul S, Hata T, Komori H, Motohara S, Uehata H (2000) Clinical and angiographic follow-up of a new biodegradable coronary stent (Igaki–Tamai stent). J Am Coll Cardiol 35:89a–89aGoogle Scholar
  202. 202.
    Wache HM, Tartakowska DJ, Hentrich A, Wagner MH (2003) Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci-Mater M 14:109–112. doi: 10.1023/A:1022007510352 Google Scholar
  203. 203.
    Baer GM, Wilson TS, Small W, Hartman J, Benett WJ, Matthews DL, Maitland DJ (2009) Thermomechanical properties, collapse pressure, and expansion of shape memory polymer neurovascular stent prototypes. J Biomed Mater Res B 90B:421–429. doi: 10.1002/Jbm.B.31301 Google Scholar
  204. 204.
    Baer G, Wilson T, Maitland D, Matthews D (2006) Shape memory polymer neurovascular stents. J Invest Med 54:S162–S162. doi: 10.2310/6650.2005.X0004 Google Scholar
  205. 205.
    Kessel DO, Patel JV (2005) Current trends in thrombolysis: implications for diagnostic and interventional radiology. Clin Radiol 60:413–424. doi: 10.1016/j.crad.2004.11.015 Google Scholar
  206. 206.
    delZoppo GJ (1996) Tissue plasminogen activator for acute ischemic stroke. New Engl J Med 334:1406. doi: 10.1056/NEJM199605233342114 Google Scholar
  207. 207.
    Qureshi N (1996) Tissue plasminogen activator for acute ischemic stroke. New Engl J Med 334:1406. doi: 10.1056/NEJM199605233342114 Google Scholar
  208. 208.
    Koroshetz WJ (1996) Tissue plasminogen activator for acute ischemic stroke. New Engl J Med 334:1405–1406. doi: 10.1056/NEJM199605233342114 Google Scholar
  209. 209.
    Marler JR (1996) Tissue plasminogen activator for acute ischemic stroke—reply. New Engl J Med 334:1406. doi: 10.1056/NEJM199605233342114 Google Scholar
  210. 210.
    Friedman HS (1996) Tissue plasminogen activator for acute ischemic stroke. New Engl J Med 334:1405. doi: 10.1056/NEJM199605233342114 Google Scholar
  211. 211.
    Zhu W, Yin Q, Zhang R, Xu G, Ma M, Fan X, Fan X, Liu X (2011) Effect of intra-arterial thrombolysis with rt-PA and endovascular mechanical recanalization in posterial circulation acute ischemic stroke. Cerebrovasc Dis 32:9Google Scholar
  212. 212.
    Berlis A, Lutsep H, Barnwell S, Norbash A, Wechsler L, Jungreis CA, Woolfenden A, Redekop G, Hartmann M, Schumacher M (2004) Mechanical thrombolysis in acute ischemic stroke with endovascular photoacoustic recanalization. Stroke 35:1112–1116. doi: 10.1161/01.Str.0000124126.17508.D3 Google Scholar
  213. 213.
    Kerber CW, Barr JD, Berger RM, Chopko BW (2002) Snare retrieval of intracranial thrombus in patients with acute stroke. J Vasc Interv Radiol 13:1269–1274. doi: 10.1016/S1051-0443(07)61978-2 Google Scholar
  214. 214.
    Mayer TE, Hamann GF, Brueckmann HJ (2002) Treatment of basilar artery embolism with a mechanical extraction device—necessity of flow reversal. Stroke 33:2232–2235. doi: 10.1161/01str000002452471680c6 Google Scholar
  215. 215.
    Bellon RJ, Putman CM, Budzik RF, Pergolizzi RS, Reinking GF, Norbash AM (2001) Rheolytic thrombectomy of the occluded internal carotid artery in the setting of acute ischemic stroke. Am J Neuroradiol 22:526–530Google Scholar
  216. 216.
    Metzger MF, Wilson TS, Schumann D, Matthews DL, Maitland DJ (2002) Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed Microdevices 4:89–96. doi: 10.1023/A:1014674912979 Google Scholar
  217. 217.
    Maitland DJ, Metzger MF, Schumann D, Lee A, Wilson TS (2002) Photothermal properties of shape memory polymer micro-actuators for treating stroke. Laser Surg Med 30:1–11. doi: 10.1002/lsm.10007 Google Scholar
  218. 218.
    Small W, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13:8204–8213. doi: 10.1364/Opex.13.008204 Google Scholar
  219. 219.
    Enriquez-Sarano M, Schaff HV, Orszulak TA, Bailey KR, Tajik AJ, Frye RL (1995) Congestive heart failure after surgical correction of mitral regurgitation. A long-term study. Circulation 92:2496–2503. doi: 10.1161/01.CIR.92.9.2496 Google Scholar
  220. 220.
    Enriquez-Sarano M, Schaff HV, Orszulak TA, Tajik AJ, Bailey KR, Frye RL (1995) Valve repair improves the outcome of surgery for mitral regurgitation. A multivariate analysis. Circulation 91:1022–1028. doi: 10.1161/01.CIR.91.4.1022 Google Scholar
  221. 221.
    Lorenzo V, Díaz-Lantada A, Lafont P, Lorenzo-Yustos H, Fonseca C, Acosta J (2009) Physical ageing of a PU-based shape memory polymer: influence on their applicability to the development of medical devices. Mater Des 30:2431–2434. doi: 10.1016/j.matdes.2008.10.023 Google Scholar
  222. 222.
    Lantada AD, Del Valle-Fernandez R, Morgado PL, Munoz-Garcia J, Sanz JLM, Munoz-Guijosa JM, Otero JE (2010) Development of personalized annuloplasty rings: combination of CT images and CAD-CAM tools. Ann Biomed Eng 38:280–290. doi: 10.1007/s10439-009-9805-z Google Scholar
  223. 223.
    Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W (2003) Brain responses to micro-machined silicon devices. Brain Res 983:23–35. doi: 10.1016/S0006-8993(03)03023-3 Google Scholar
  224. 224.
    Sharp AA, Panchawagh HV, Ortega A, Artale R, Richardson-Burns S, Finch DS, Gall K, Mahajan RL, Restrepo D (2006) Toward a self-deploying shape memory polymer neuronal electrode. J Neural Eng 3:L23–L30. doi: 10.1088/1741-2560/3/4/l02 Google Scholar
  225. 225.
    Xue L, Dai S, Li Z (2012) Synthesis and characterization of elastic star shape-memory polymers as self-expandable drug-eluting stents. J Mater Chem 22:7403. doi: 10.1039/c2jm15918j Google Scholar
  226. 226.
    Lendlein A, Kelch S (2005) Shape-memory polymers as stimuli-sensitive implant materials. Clin Hemorheol Micro 32:105–116Google Scholar
  227. 227.
    Brem H, Gabikian P (2001) Biodegradable polymer implants to treat brain tumors. J Control Release 74:63–67. doi: 10.1016/S0168-3659(01)00311-X Google Scholar
  228. 228.
    Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789. doi: 10.1039/B515219b Google Scholar
  229. 229.
    Patil SD, Papadmitrakopoulos F, Burgess DJ (2007) Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release 117:68–79. doi: 10.1016/j.jconrel.2006.10.013 Google Scholar
  230. 230.
    Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9:5–15. doi: 10.1089/10763270360696941 Google Scholar
  231. 231.
    Neffe AT, Hanh BD, Steuer S, Lendlein A (2009) Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater 21:3394–3398. doi: 10.1002/adma.200802333 Google Scholar
  232. 232.
    Olson DA, Gratton SEA, DeSimone JM, Sheares VV (2006) Amorphous linear aliphatic polyesters for the facile preparation of tunable rapidly degrading elastomeric devices and delivery vectors. J Am Chem Soc 128:13625–13633. doi: 10.1021/Ja063092m Google Scholar
  233. 233.
    Wischke C, Neffe AT, Lendlein A (2010) Controlled drug release from biodegradable shape-memory polymers. Adv Polym Sci 226:177–205. doi:10.1007/12_2009_29Google Scholar
  234. 234.
    Wischke C, Neffe AT, Steuer S, Lendlein A (2009) Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J Control Release 138:243–250. doi: 10.1016/j.jconrel.2009.05.027 Google Scholar
  235. 235.
    Rickert D, Lendlein A, Kelch S, Franke RP, Moses MA (2005) Cell proliferation and cellular activity of primary cell cultures of the oral cavity after cell seeding on the surface of a degradable, thermoplastic block copolymer. Biomed Tech 50:92–99Google Scholar
  236. 236.
    Farè S, Valtulina V, Petrini P, Alessandrini E, Pietrocola G, Tanzi MC, Speziale P, Visai L (2005) In vitro interaction of human fibroblasts and platelets with a shape-memory polyurethane. J Biomed Mater Res, Part A 73:1–11. doi: 10.1002/jbm.a.30193 Google Scholar
  237. 237.
    Cabanlit M, Maitland D, Wilson T, Simon S, Wun T, Gershwin ME, Van de Water J (2007) Polyurethane shape-memory polymers demonstrate functional biocompatibility in vitro. Macromol Biosci 7:48–55. doi: 10.1002/mabi.200600177 Google Scholar
  238. 238.
    Neuss S, Blomenkamp I, Stainforth R, Boltersdorf D, Jansen M, Butz N, Perez-Bouza A, Knuchel R (2009) The use of a shape-memory poly(epsilon-caprolactone)dimethacrylate network as a tissue engineering scaffold. Biomaterials 30:1697–1705. doi: 10.1016/j.biomaterials.2008.12.027 Google Scholar
  239. 239.
    Nakasima A, Hu JR, Ichinose M, Shimada H (1991) Potential application of shape memory plastic as elastic-material in clinical orthodontics. Eur J Orthodont 13:179–186. doi: 10.1093/ejo/13.3.179 Google Scholar
  240. 240.
    Ortega JM, Small W, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2007) A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts. IEEE T Bio-Med Eng 54:1722–1724. doi: 10.1109/Tbme.2007.892927 Google Scholar
  241. 241.
    Huang WM, Liu N, Lan X, Lin JQ, Pan JH, Leng JS, Phee SJ, Fan H, Liu YJ, Tong TH (2009) Formation of protrusive micro/nano patterns atop shape memory polymers. Mater Sci Forum 614:243–248. doi: 10.4028/ Google Scholar
  242. 242.
    Liu N, Xie Q, Huang WM, Phee SJ, Guo NQ (2008) Formation of micro protrusion arrays atop shape memory polymer. J Micromech Microeng 18:027001. doi: 10.1088/0960-1317/18/2/027001 Google Scholar
  243. 243.
    Liu N, Huang WM, Phee SJ, Tong TH (2008) The formation of micro-protrusions atop a thermo-responsive shape memory polymer. Smart Mater Struct 17:057001. doi: 10.1088/0964-1726/17/5/057001 Google Scholar
  244. 244.
    Huang WM, Lee CW, Teo HP (2006) Thermomechanical behavior of a polyurethane shape memory polymer foam. J Intel Mat Syst Str 17:753–760. doi: 10.1177/1045389x06055768 Google Scholar
  245. 245.
    Liu N, Huang WM, Phee SJ, Fan H, Chew KL (2007) A generic approach for producing various protrusive shapes on different size scales using shape-memory polymer. Smart Mater Struct 16:N47–N50. doi: 10.1088/0964-1726/16/6/N01 Google Scholar
  246. 246.
    Lee AP, Northrup MA, Ahre PE, Dupuy PC (1997) Polymer micromold and fabrication process. US Patent 5,658,515 Google Scholar
  247. 247.
    Benett WJ, Krulevitch PA, Lee AP, Northrup MA, Flolta JA (1997) Miniature plastic gripper and fabrication method. US Patent 5,609,608Google Scholar
  248. 248.
    Lee AP, Fitch JP (2000) Micro devices using shape memory polymer patches for mated connections. US Patent 6,086,599Google Scholar
  249. 249.
    Lee AP, Northrup MA, Ciarlo DR, Krulevitch PA, Benett WJ (2000) Release mechanism utilizing shape memory polymer material. US Patent 6,102,933Google Scholar
  250. 250.
    Ferrera DA (2001) Shape memory polymer intravascular delivery system with heat transfer medium. US Patent 6,224,610Google Scholar
  251. 251.
    Takashima K, Rossiter J, Mukai T (2010) McKibben artificial muscle using shape-memory polymer. Sens Actuators, A 164:116–124. doi: 10.1016/j.sna.2010.09.010 Google Scholar
  252. 252.
    Small W, Wilson TS, Buckley PR, Benett WJ, Loge JA, Hartman J, Maitland DJ (2007) Prototype fabrication and preliminary in vitro testing of a shape memory endovascular thrombectomy device. IEEE T Bio-Med Eng 54:1657–1666. doi: 10.1109/Tbme.2007.892921 Google Scholar
  253. 253.
    Harris KD, Cuypers R, Scheibe P, van Oosten CL, Bastiaansen CWM, Lub J, Broer DJ (2005) Large amplitude light-induced motion in high elastic modulus polymer actuators. J Mater Chem 15:5043–5048. doi: 10.1039/B512655J Google Scholar
  254. 254.
    Ikeda T, Ube T (2011) Photomobile polymer materials: From nano to macro. Mater Today 14:480–487. doi: 10.1016/S1369-7021(11)70212-7 Google Scholar
  255. 255.
    Yamada M, Kondo M, Miyasato R, Naka Y, Mamiya JI, Kinoshita M, Shishido A, Yu Y, Barrett CJ, Ikeda T (2009) Photomobile polymer materials—various three-dimensional movements. J Mater Chem 19:60–62. doi: 10.1039/b815289f Google Scholar
  256. 256.
    Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K (1990) Design of an open-tubular column liquid chromatograph using silicon chip technology. Sensor Actuat B-Chem 1:249–255. doi: 10.1016/0925-4005(90)80210-Q Google Scholar
  257. 257.
    Finnskog D, Ressine A, Laurell T, Marko-Varga G (2004) Integrated protein microchip assay with dual fluorescent- and MALDI read-out. J Proteome Res 3:988–994. doi: 10.1021/Pr0499287 Google Scholar
  258. 258.
    Bings NH, Wang C, Skinner CD, Colyer CL, Thibault P, Harrison DJ (1999) Microfluidic devices connected to fused-silica capillaries with minimal dead volume. Anal Chem 71:3292–3296. doi: 10.1021/ac981419z Google Scholar
  259. 259.
    Grosse A, Grewe M, Fouckhardt H (2001) Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. J Micromech Microeng 11:257–262. doi: 10.1088/0960-1317/11/3/315 Google Scholar
  260. 260.
    Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—capillary electrophoresis on a chip. J Chromatogr 593:253–258. doi: 10.1016/0021-9673(92)80293-4 Google Scholar
  261. 261.
    Harrison DJ, Fluri K, Seiler K, Fan ZH, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261:895–897. doi: 10.1126/science.261.5123.895 Google Scholar
  262. 262.
    Golonka LJ, Roguszczak H, Zawada T, Radojewski J, Grabowska I, Chudy M, Dybko A, Brzozka Z, Stadnik D (2005) LTCC based microfluidic system with optical detection. Sensor Actuat B-Chem 111:396–402. doi: 10.1016/j.snb.2005.03.065 Google Scholar
  263. 263.
    Natarajan G, Humenik JN (2006) 3D ceramic microfluidic device manufacturing. J Phys: Conf Ser 34:533–539. doi: 10.1088/1742-6596/34/1/088 Google Scholar
  264. 264.
    Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56:267–287. doi: 10.1016/S0039-9140(01)00594-X Google Scholar
  265. 265.
    Quake SR, Scherer A (2000) From micro- to nanofabrication with soft materials. Science 290:1536–1540. doi: 10.1126/science.290.5496.1536 Google Scholar
  266. 266.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. doi: 10.1021/ac980656z Google Scholar
  267. 267.
    Muck A, Wang J, Jacobs M, Chen G, Chatrathi MP, Jurka V, Vyborny Z, Spillman SD, Sridharan G, Schoning MJ (2004) Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding. Anal Chem 76:2290–2297. doi: 10.1021/ac035030+ Google Scholar
  268. 268.
    Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590. doi: 10.1038/35007047 Google Scholar
  269. 269.
    Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliver Rev 56:199–210. doi: 10.1016/j.addr.2003.08.013 Google Scholar
  270. 270.
    Beebe DJ, Moore JS, Yu Q, Liu RH, Kraft ML, Jo BH, Devadoss C (2000) Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. P Natl Acad Sci USA 97:13488–13493. doi: 10.1073/pnas.250273097 Google Scholar
  271. 271.
    Yu C, Mutlu S, Selvaganapathy P, Mastrangelo CH, Svec F, Frechett JMJ (2003) Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal Chem 75:1958–1961. doi: 10.1021/Ac026455j Google Scholar
  272. 272.
    Ionov L, Houbenov N, Sidorenko A, Stamm M, Minko S (2006) Smart microfluidic channels. Adv Funct Mater 16:1153–1160. doi: 10.1002/adfm.200500562 Google Scholar
  273. 273.
    Idota N, Kikuchi A, Kobayashi J, Sakai K, Okano T (2005) Microfluidic valves comprising nanolayered thermoresponsive polymer-grafted capillaries. Adv Mater 17:2723. doi: 10.1002/adma.200402068
  274. 274.
    Idota N, Kikuchi A, Kobayashi J, Akiyama Y, Okano T (2006) Thermal modulated interaction of aqueous steroids using polymer-grafted capillaries. Langmuir 22:425–430. doi: 10.1021/La051968h Google Scholar
  275. 275.
    Malmstadt N, Yager P, Hoffman AS, Stayton PS (2003) A smart microfluidic affinity chromatography matrix composed of poly(N-isopropylacrylamide)-coated beads. Anal Chem 75:2943–2949. doi: 10.1021/Ac034274r Google Scholar
  276. 276.
    Ebara M, Hoffman JM, Hoffman AS, Stayton PS (2006) Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab Chip 6:843–848. doi: 10.1039/B515128g Google Scholar
  277. 277.
    Techawanitchai P, Yamamoto K, Ebara M, Aoyagi T (2011) Surface design with self-heating smart polymers for on-off switchable traps. Sci Technol Adv Mat 12:044609 (44607 pages). doi: 10.1088/1468-6996/12/4/044609
  278. 278.
    Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144. doi: 10.1146/annurev.bioeng.10.061807.160524 Google Scholar
  279. 279.
    Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T (2013) Rewritable and shape-memory soft matter with dynamically tunable microchannel geometry in a biological temperature range. Soft Matter 9:3074–3080. doi: 10.1039/C3SM27243E Google Scholar
  280. 280.
    Takehara H, Uto K, Ebara M, Aoyagi T, Ichiki T (2012) Shape-memory polymer microvalves. Proc μTAS 2012:1846–1848Google Scholar
  281. 281.
    Takehara H, Jiang C, Uto K, Ebara M, Aoyagi T, Ichiki T (2013) Novel microfluidic valve technology based on shape memory effect of poly(ε-caprolactone). Appl Phys Express 6:037201. doi: 10.7567/apex.6.037201 Google Scholar
  282. 282.
    Shoji S, Esashi M (1994) Microflow devices and systems. J Micromech Microeng 4:157–171. doi: 10.1088/0960-1317/4/4/001 Google Scholar
  283. 283.
    Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116. doi: 10.1126/science.288.5463.113 Google Scholar
  284. 284.
    Kim J, Hayward RC (2012) Mimicking dynamic in vivo environments with stimuli-responsive materials for cell culture. Trends Biotechnol 30:426–439. doi: 10.1016/j.tibtech.2012.04.003 Google Scholar
  285. 285.
    Rickert D, Lendlein A, Peters I, Moses M, Franke R-P (2006) Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: an overview. Eur Arch Otorhinolaryngol 263:215–222. doi: 10.1007/s00405-005-0950-1 Google Scholar
  286. 286.
    Nelson BA, King WP, Gall K (2005) Shape recovery of nanoscale imprints in a thermoset “shape memory” polymer. Appl Phys Lett 86:103108. doi: 10.1063/1.1868883 Google Scholar
  287. 287.
    Altebaeumer T, Gotsmann B, Pozidis H, Knoll A, Duerig U (2008) Nanoscale shape-memory function in highly cross-linked polymers. Nano Lett 8:4398–4403. doi: 10.1021/nl8022737 Google Scholar
  288. 288.
    Gall K, Kreiner P, Turner D, Hulse M (2004) Shape-memory polymers for microelectromechanical systems. J Microelectromech Syst 13:472–483. doi: 10.1109/jmems.2004.828727 Google Scholar
  289. 289.
    Burke KA, Mather PT (2010) Soft shape memory in main-chain liquid crystalline elastomers. J Mater Chem 20:3449–3457. doi: 10.1039/B924050K Google Scholar
  290. 290.
    Xie T, Xiao X, Li J, Wang R (2010) Encoding localized strain history through wrinkle based structural colors. Adv Mater 22:4390–4394. doi: 10.1002/adma.201002825 Google Scholar
  291. 291.
    Wang ZY, Teo EY, Chong MS, Zhang QY, Lim J, Zhang ZY, Hong MH, Thian ES, Chan JK, Teoh SH (2013) Biomimetic three-dimensional anisotropic geometries by uniaxial stretch of poly(ε-caprolactone) films for mesenchymal stem cell proliferation, alignment, and myogenic differentiation. Tissue Eng Part C Methods 19:12 pages. doi: 10.1089/ten.TEC.2012.0472
  292. 292.
    Lam MT, Clem WC, Takayama S (2008) Reversible on-demand cell alignment using reconfigurable microtopography. Biomaterials 29:1705–1712. doi: 10.1016/j.biomaterials.2007.12.010 Google Scholar
  293. 293.
    Davis KA, Burke KA, Mather PT, Henderson JH (2011) Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32:2285–2293. doi: 10.1016/j.biomaterials.2010.12.006 Google Scholar
  294. 294.
    Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T (2012) Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv Mater 24:273–278. doi: 10.1002/adma.201102181 Google Scholar
  295. 295.
    Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T (2013) The taming of the cell; shape-memory nanopatterns direct cell orientation. Int J Nanomedicine. In pressGoogle Scholar
  296. 296.
    Le DM, Kulangara K, Adler AF, Leong KW, Ashby VS (2011) Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(epsilon-caprolactone) surfaces. Adv Mater 23:3278. doi: 10.1002/adma.201100821
  297. 297.
    Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522. doi: 10.1016/j.progpolymsci.2008.02.001 Google Scholar
  298. 298.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797. doi: 10.1038/35057232 Google Scholar
  299. 299.
    Ni WY, Cheng YT, Grummon DS (2006) Wear resistant self-healing tribological surfaces by using hard coatings on NiTi shape memory alloys. Surf Coat Tech 201:1053–1057. doi: 10.1016/j.surfcoat.2006.01.067 Google Scholar
  300. 300.
    Kirkby EL, Rule JD, Michaud VJ, Sottos NR, White SR, Manson JAE (2008) Embedded shape-memory alloy wires for improved performance of self-healing polymers (vol 18, p 2253, 2008). Adv Funct Mater 18:2470. doi: 10.1002/adfm.200701208 Google Scholar
  301. 301.
    Kirkby EL, Michaud VJ, Manson JAE, Sottos NR, White SR (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50:5533–5538. doi: 10.1016/j.polymer.2009.05.014 Google Scholar
  302. 302.
    Rodriguez ED, Luo X, Mather PT (2009) Shape memory miscible blends for thermal mending. Behav Mech Multifunct Mater Compos 728912. doi: 10.1117/12.816042
  303. 303.
    Rodriguez ED, Luo X, Mather PT (2011) Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl Mater Interfaces 3:152–161. doi: 10.1021/am101012c Google Scholar
  304. 304.
    Xiao X, Xie T, Cheng Y-T (2010) Self-healable graphene polymer composites. J Mater Chem 20:3508–3514. doi: 10.1039/C0JM00307G Google Scholar
  305. 305.
    Kohlmeyer RR, Lor M, Chen J (2012) Remote, local, and chemical programming of healable multishape memory polymer nanocomposites. Nano Lett 12:2757–2762. doi: 10.1021/nl2044875 Google Scholar
  306. 306.
    Xie T, Xiao X (2008) Self-peeling reversible dry adhesive system. Chem Mater 20:2866–2868. doi: 10.1021/cm800173c Google Scholar
  307. 307.
    Luo X, Lauber KE, Mather PT (2010) A thermally responsive, rigid, and reversible adhesive. Polymer 51:1169–1175. doi: 10.1016/j.polymer.2010.01.006 Google Scholar
  308. 308.
    Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090. doi: 10.1093/icb/42.6.1081 Google Scholar
  309. 309.
    Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci 100:10603–10606. doi: 10.1073/pnas.1534701100 Google Scholar
  310. 310.
    Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20:2842–2858. doi: 10.1002/adma.200800836 Google Scholar
  311. 311.
    Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463. doi: 10.1038/nmat917 Google Scholar
  312. 312.
    Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209:2611–2621. doi: 10.1242/Jeb.02323 Google Scholar
  313. 313.
    Reddy S, Arzt E, del Campo A (2007) Bioinspired surfaces with switchable adhesion. Adv Mater 19:3833–3837. doi: 10.1002/adma.200700733 Google Scholar
  314. 314.
    Kim S, Sitti M, Xie T, Xiao X (2009) Reversible dry micro-fibrillar adhesives with thermally controllable adhesion. Soft Matter 5:3689–3693. doi: 10.1039/B909885B Google Scholar
  315. 315.
    Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640. doi: 10.1016/j.matdes.2011.04.065 Google Scholar
  316. 316.
    Chiodo JD, Harrison DJ, Billett EH (2001) An initial investigation into active disassembly using shape memory polymers. P I Mech Eng B-J Eng 215:733–741. doi: 10.1243/0954405011518539 Google Scholar
  317. 317.
    Active disassembly research.
  318. 318.
    Yang B, Huang WM, Li C, Lee CM, Li L (2004) On the effects of moisture in a polyurethane shape memory polymer. Smart Mater Struct 13:191. doi: 10.1088/0964-1726/13/1/022 Google Scholar
  319. 319.
    Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20:3367–3381. doi: 10.1039/B922943D Google Scholar
  320. 320.
    Sakata Y, Furukawa S, Kondo M, Hirai K, Horike N, Takashima Y, Uehara H, Louvain N, Meilikhov M, Tsuruoka T, Isoda S, Kosaka W, Sakata O, Kitagawa S (2013) Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339:193–196. doi: 10.1126/science.1231451 Google Scholar
  321. 321.
    Triguero C, Coudert F-X, Boutin A, Fuchs AH, Neimark AV (2011) Mechanism of breathing transitions in metal-organic frameworks. J Phys Chem Lett 2:2033–2037. doi: 10.1021/jz2008769 Google Scholar
  322. 322.
    Liu WG, Zhang JR, De Yao K (2002) DNA/lipid complex organogel with shape-memory behavior. J Appl Polym Sci 86:259–263. doi: 10.1002/app.10919 Google Scholar
  323. 323.
    Lee JB, Peng S, Yang D, Roh YH, Funabashi H, Park N, Rice EJ, Chen L, Long R, Wu M, Luo D (2012) A mechanical metamaterial made from a DNA hydrogel. Nat Nano 7:816–820. doi: 10.1038/nnano.2012.211 Google Scholar
  324. 324.
    Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ (2012) Injectable preformed scaffolds with shape-memory properties. P Natl Acad Sci USA. doi: 10.1073/pnas.1211516109 Google Scholar

Copyright information

© National Institute for Materials Science, Japan. Published by Springer Japan 2014

Authors and Affiliations

  • Mitsuhiro Ebara
    • 1
  • Yohei Kotsuchibashi
    • 1
  • Koichiro Uto
    • 1
    Email author
  • Takao Aoyagi
    • 1
  • Young-Jin Kim
    • 2
  • Ravin Narain
    • 3
  • Naokazu Idota
    • 4
  • John M. Hoffman
    • 5
  1. 1.National Institute for Materials ScienceTsukubaJapan
  2. 2.The University of TokyoTokyoJapan
  3. 3.University of AlbertaEdmontonCanada
  4. 4.Waseda UniversityShinjuku-kuJapan
  5. 5.Stratos GenomicsWorld Trade Center NorthSeattleUSA

Personalised recommendations