Smart Bioconjugates

  • Mitsuhiro Ebara
  • Yohei Kotsuchibashi
  • Koichiro Uto
  • Takao Aoyagi
  • Young-Jin Kim
  • Ravin Narain
  • Naokazu Idota
  • John M. Hoffman
Part of the NIMS Monographs book series (NIMSM)


Bioconjugations with synthetic polymers have been a versatile way to add new value, advanced features and unique properties to biomolecules. Smart polymer-protein conjugates have been investigated over the past 30 years. Since the conjugation of smart polymer to single molecule can generate a nano-scale switch, many researchers have conjugated smart polymers to proteins for a great variety of applications in affinity separations, enzyme bioprocesses, drug delivery, diagnostics and biosensors, cell culture processes including tissue engineering, and DNA motors. Biomolecules that can be conjugated with smart polymers include not only proteins but also peptides, polysaccharides, and DNA, and lipids etc. This chapter reviews different types of smart polymer-biomolecule conjugates that have been developed in the last decades.


Bioconjugates PEGylation Site-specific conjugations Random conjugations Protein-reactive initiators 


  1. 1.
    Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci: Polym Symp 51:135–153. doi: 10.1002/polc.5070510111 Google Scholar
  2. 2.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392Google Scholar
  3. 3.
    Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582–3586Google Scholar
  4. 4.
    Mok H, Palmer DJ, Ng P, Barry MA (2005) Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther 11:66–79Google Scholar
  5. 5.
    O’Riordan CR, Song A (2008) PEGylated adenovirus for targeted gene therapy. In: Doux J (ed) Gene therapy protocols, vol 434. Methods in molecular biology™. Humana Press, pp 133–160. doi:10.1007/978-1-60327-248-3_9Google Scholar
  6. 6.
    Scott MD, Murad KL, Koumpouras F, Talbot M, Eaton JW (1997) Chemical camouflage of antigenic determinants: Stealth erythrocytes. In: Proceedings of the national academy of sciences, vol 94. U.S.A., pp 7566–7571Google Scholar
  7. 7.
    Hashemi-Najafabadi S, Vasheghani-Farahani E, Shojaosadati SA, Rasaee MJ, Armstrong JK, Moin M, Pourpak Z (2006) A method to optimize PEG-coating of red blood cells. Bioconjug Chem 17:1288–1293. doi: 10.1021/bc060057w Google Scholar
  8. 8.
    Mansouri S, Merhi Y, Winnik FM, Tabrizian M (2011) Investigation of layer-by-layer assembly of polyelectrolytes on fully functional human red blood cells in suspension for attenuated immune response. Biomacromolecules 12:585–592. doi: 10.1021/bm101200c Google Scholar
  9. 9.
    Charles M, Coughlin RW, Hasselberger FX (1974) Soluble–insoluble enzyme catalysts. Biotechnol Bioeng 16:1553–1556. doi: 10.1002/bit.260161113 Google Scholar
  10. 10.
    Van Leemputten E, Horisberger M (1976) Soluble–insoluble complex of trypsin immobilized on acrolein–acrylic acid copolymer. Biotechnol Bioeng 18:587–590. doi: 10.1002/bit.260180410 Google Scholar
  11. 11.
    Shoemaker SG, Hoffman AS, Priest JH (1987) Synthesis and properties of vinyl monomer/enzyme conjugates. Appl Biochem Biotechnol 15:11–24. doi: 10.1007/bf02798503 Google Scholar
  12. 12.
    Auditore-Hargreaves K, Houghton RL, Monji N, Priest JH, Hoffman AS, Nowinski RC (1987) Phase-separation immunoassays. Clin Chem 33:1509–1516Google Scholar
  13. 13.
    Hoffman AS (1987) Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Controlled Release 6:297–305.
  14. 14.
    Monji N, Hoffman A (1987) A novel immunoassay system and bioseparation process based on thermal phase separating polymers. Appl Biochem Biotechnol 14:107–120. doi: 10.1007/bf02798429 Google Scholar
  15. 15.
    Luong JHT, Nguyen A-L (1990) Affinity partitioning of bioproducts. Nat Biotech 8:306–307Google Scholar
  16. 16.
    Takei YG, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T, Matsukata M, Kikuchi A (1994) Temperature-responsive bioconjugates. 3. Antibody-poly(N-isopropylacrylamide) conjugates for temperature-modulated precipitations and affinity bioseparations. Bioconjug Chem 5:577–582. doi: 10.1021/bc00030a013 Google Scholar
  17. 17.
    Fujimura M, Mori T, Tosa T (1987) Preparation and properties of soluble–insoluble immobilized proteases. Biotechnol Bioeng 29:747–752. doi: 10.1002/bit.260290612 Google Scholar
  18. 18.
    Ito Y, Kotoura M, Chung DJ, Imanishi Y (1993) Trypsin modification by vinyl polymers with variable solubilities in response to external signals. Bioconjug Chem 4:358–361. doi: 10.1021/bc00023a009 Google Scholar
  19. 19.
    Shimoboji T, Ding ZL, Stayton PS, Hoffman AS (2002) Photoswitching of ligand association with a photoresponsive polymer-protein conjugate. Bioconjug Chem 13:915–919. doi: 10.1021/bc010057q Google Scholar
  20. 20.
    Dainiak MB, Izumrudov VA, Muronetz VI, Galaev IY, Mattiasson B (1998) Conjugates of monoclonal antibodies with polyelectrolyte complexes—an attempt to make an artificial chaperone. Biochim Biophys Acta 1381:279–285.
  21. 21.
    Muronetz VI, Kazakov SV, Dainiak MB, Izumrudov VA, Galaev IY, Mattiasson B (2000) Interaction of antibodies and antigens conjugated with synthetic polyanions: on the way of creating an artificial chaperone. Biochim Biophys Acta 1475:141–150.
  22. 22.
    Lackey CA, Press OW, Hoffman AS, Stayton PS (2002) A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug Chem 13:996–1001. doi: 10.1021/bc010053l Google Scholar
  23. 23.
    Furgeson DY, Dreher MR, Chilkoti A (2006) Structural optimization of a “smart” doxorubicin–polypeptide conjugate for thermally targeted delivery to solid tumors. J Controlled Release 110:362–369.
  24. 24.
    Golden AL, Battrell CF, Pennell S, Hoffman AS, J. Lai J, Stayton PS (2010) Simple fluidic system for purifying and concentrating diagnostic biomarkers using stimuli-responsive antibody conjugates and membranes. Bioconjug Chem 21:1820–1826. doi:10.1021/bc100169yGoogle Scholar
  25. 25.
    Mori T, Maeda M (2003) Temperature-Responsive formation of colloidal nanoparticles from poly(N-isopropylacrylamide) grafted with single-stranded DNA. Langmuir 20:313–319. doi: 10.1021/la0356194 Google Scholar
  26. 26.
    Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T (2012) Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv Mater 24:273–278. doi: 10.1002/adma.201102181 Google Scholar
  27. 27.
    Kim Y-J, Ebara M, Aoyagi T (2012) A smart nanofiber web that captures and releases cells. Angew Chem Int Ed 51:10537–10541. doi: 10.1002/anie.201204139 Google Scholar
  28. 28.
    Kumar A, Kamihira M, Galaev IY, Mattiasson B, Iijima S (2001) Type-specific separation of animal cells in aqueous two-phase systems using antibody conjugates with temperature-sensitive polymers. Biotechnol Bioeng 75:570–580. doi: 10.1002/bit.10080 Google Scholar
  29. 29.
    Pennadam S, Firman K, Alexander C, Gorecki D (2004) Protein-polymer nano-machines. Towards synthetic control of biological processes. J Nanobiotechnol 2:8Google Scholar
  30. 30.
    Pennadam SS, Lavigne MD, Dutta CF, Firman K, Mernagh D, Górecki DC, Alexander C (2004) Control of a multisubunit DNA Motor by a thermoresponsive Polymer Switch. J Am Chem Soc 126:13208–13209. doi: 10.1021/ja045275j Google Scholar
  31. 31.
    Stoica F, Alexander C, Tirelli N, Miller AF, Saiani A (2008) Selective synthesis of double temperature-sensitive polymer-peptide conjugates. Chem Commun 37:4433–4435Google Scholar
  32. 32.
    Fujimoto K, Iwasaki C, Arai C, Kuwako M, Yasugi E (2000) Control of cell death by the smart polymeric vehicle. Biomacromolecules 1:515–518. doi: 10.1021/bm000082j Google Scholar
  33. 33.
    Vázquez-Dorbatt V, Tolstyka ZP, Maynard HD (2009) Synthesis of aminooxy end-functionalized PNIPAAm by RAFT polymerization for protein and polysaccharide conjugation. Macromolecules 42:7650–7656. doi: 10.1021/ma9013803 Google Scholar
  34. 34.
    Lima A, Song W, Blanco-Fernandez B, Alvarez-Lorenzo C, Mano J (2011) Synthesis of temperature-responsive dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces. Pharm Res 28:1294–1305. doi: 10.1007/s11095-011-0380-2 Google Scholar
  35. 35.
    Kotsuchibashi Y, Ebara M, Idota N, Narain R, Aoyagi T (2012) A ‘smart’ approach towards the formation of multifunctional nano-assemblies by simple mixing of block copolymers having a common temperature sensitive segment. Polym Chem-Uk 3:1150–1157Google Scholar
  36. 36.
    Murata M, Kaku W, Anada T, Sato Y, Kano T, Maeda M, Katayama Y (2003) Novel DNA/polymer conjugate for intelligent antisense reagent with improved nuclease resistance. Bioorg Med Chem Lett 13:3967–3970.
  37. 37.
    Ta T, Convertine AJ, Reyes CR, Stayton PS, Porter TM (2010) Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules 11:1915–1920. doi: 10.1021/bm1004993 Google Scholar
  38. 38.
    Kono K, Nakai R, Morimoto K, Takagishi T (1999) Thermosensitive polymer-modified liposomes that release contents around physiological temperature. Biochim Biophys Acta 1416:239–250.
  39. 39.
    Stayton PS, Shimoboji T, Long C, Chilkoti A, Ghen G, Harris JM, Hoffman AS (1995) Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 378:472–474Google Scholar
  40. 40.
    Kiick KL, Tirrell DA (2000) Protein engineering by in vivo incorporation of non-natural amino acids: control of incorporation of methionine analogues by methionyl-trna synthetase. Tetrahedron 56:9487-9493.
  41. 41.
    Chen J-P, Chu D-H, Sun Y-M (1997) Immobilization of α-amylase to temperature-responsive polymers by single or multiple point attachments. J Chem Technol Biotechnol 69:421–428. doi: 10.1002/(sici)1097-4660(199708)69:4<421:aid-jctb730>;2-3 Google Scholar
  42. 42.
    Matsukata M, Aoki T, Sanui K, Ogata N, Kikuchi A, Sakurai Y, Okano T (1996) Effect of molecular architecture of poly(N-isopropylacrylamide)–trypsin conjugates on their solution and enzymatic properties. Bioconjug Chem 7:96–101. doi: 10.1021/bc950082u Google Scholar
  43. 43.
    Chen G, Hoffman AS (1993) Preparation and properties of thermoreversible, phase-separating enzyme-oligo (N-isopropylacrylamide) conjugates. Bioconjug Chem 4:509–514. doi: 10.1021/bc00024a013 Google Scholar
  44. 44.
    Plourde R, Phillips AT, Wu CH, Hays RM, Chowdhury JR, Chowdhury NR, Wu GY (1996) A hepatocyte-targeted conjugate capable of delivering biologically active colchicine in vitro. Bioconjug Chem 7:131–137. doi: 10.1021/bc950083m Google Scholar
  45. 45.
    Chiefari J, Chong YK, Ercole F, Kristina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition—fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562. doi: 10.1021/ma9804951 Google Scholar
  46. 46.
    Lele BS, Murata H, Matyjaszewski K, Russell AJ (2005) Synthesis of uniform protein-polymer conjugates. Biomacromolecules 6:3380–3387. doi: 10.1021/bm050428w Google Scholar
  47. 47.
    Lecolley F, Tao L, Mantovani G, Durkin I, Lautru S, Haddleton DM (2004) A new approach to bioconjugates for proteins and peptides (“pegylation”) utilising living radical polymerisation. Chem Commun 0:2026–2027Google Scholar
  48. 48.
    Tao L, Mantovani G, Lecolley F, Haddleton DM (2004) α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: application in protein conjugation “pegylation”. J Am Chem Soc 126:13220–13221. doi: 10.1021/ja0456454 Google Scholar
  49. 49.
    Kulkarni S, Schilli C, Grin B, Müller AHE, Hoffman AS, Stayton PS (2006) Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique. Biomacromolecules 7:2736–2741. doi: 10.1021/bm060186f Google Scholar
  50. 50.
    Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62Google Scholar
  51. 51.
    Bulmus V, Woodward M, Lin L, Murthy N, Stayton P, Hoffman A (2003) A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J Controlled Release 93:105–120.
  52. 52.
    Stayton PS, Hoffman AS, El-Sayed M, Kulkarni S, Shimoboji T, Murthy N, Bulmus V, Lackey C (2005) Intelligent biohybrid materials for therapeutic and imaging agent delivery. Proc IEEE 93:726–736. doi: 10.1109/jproc.2005.844619 Google Scholar
  53. 53.
    Krishnamurthy VM, Semetey V, Bracher PJ, Shen N, Whitesides GM (2007) Dependence of effective molarity on linker length for an intramolecular protein–ligand system. J Am Chem Soc 129:1312–1320. doi: 10.1021/ja066780e Google Scholar
  54. 54.
    Chilkoti A, Chen G, Stayton PS, Hoffman AS (1994) Site-specific conjugation of a temperature-sensitive polymer to a genetically engineered protein. Bioconjug Chem 5:504–507. doi: 10.1021/bc00030a004 Google Scholar
  55. 55.
    Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman AS, Stayton PS (2002) Photoresponsive polymer–enzyme switches. Proc Natl Acad Sci 99:16592–16596. doi: 10.1073/pnas.262427799 Google Scholar
  56. 56.
    Bontempo D, Heredia KL, Fish BA, Maynard HD (2004) Cysteine-reactive polymers synthesized by atom transfer radical polymerization for conjugation to proteins. J Am Chem Soc 126:15372–15373. doi: 10.1021/ja045063m Google Scholar
  57. 57.
    Mantovani G, Lecolley F, Tao L, Haddleton DM, Clerx J, Cornelissen JJLM, Velonia K (2005) Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to PEGylation chemistry. J Am Chem Soc 127:2966–2973. doi: 10.1021/ja0430999 Google Scholar
  58. 58.
    Geoghegan KF, Stroh JG (1992) Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine. Bioconjug Chem 3:138–146. doi: 10.1021/bc00014a008 Google Scholar
  59. 59.
    Gaertner HF, Offord RE, Cotton R, Timms D, Camble R, Rose K (1994) Chemo-enzymic backbone engineering of proteins. Site-specific incorporation of synthetic peptides that mimic the 64-74 disulfide loop of granulocyte colony-stimulating factor. J Biol Chem 269:7224–7230Google Scholar
  60. 60.
    Alouani S, Gaertner HF, Mermod J-J, Power CA, Bacon KB, Wells TNC, Proudfoot AEI (1995) A fluorescent interleukin-8 receptor probe produced by targetted labelling at the amino terminus. Eur J Biochem 227:328–334. doi: 10.1111/j.1432-1033.1995.tb20393.x Google Scholar
  61. 61.
    Gaertner HF, Offord RE (1996) Site-specific attachment of functionalized poly (ethylene glycol) to the amino terminus of proteins. Bioconjug Chem 7:38–44. doi: 10.1021/bc950074d Google Scholar
  62. 62.
    Heredia KL, Bontempo D, Ly T, Byers JT, Halstenberg S, Maynard HD (2005) In situ preparation of protein—“smart” polymer conjugates with retention of bioactivity. J Am Chem Soc 127:16955–16960. doi: 10.1021/ja054482w Google Scholar
  63. 63.
    Bontempo D, Maynard HD (2005) Streptavidin as a macroinitiator for polymerization. In Situ protein-polymer conjugate formation. J Am Chem Soc 127:6508–6509. doi: 10.1021/ja042230+ Google Scholar
  64. 64.
    Le Droumaguet B, Velonia K (2008) In Situ ATRP-mediated hierarchical formation of giant amphiphile bionanoreactors. Angew Chem Int Ed 47:6263–6266. doi: 10.1002/anie.200801007
  65. 65.
    Depp V, Alikhani A, Grammer V, Lele BS (2009) Native protein-initiated ATRP: a viable and potentially superior alternative to PEGylation for stabilizing biologics. Acta Biomater 5:560–569.
  66. 66.
    Magnusson JP, Bersani S, Salmaso S, Alexander C, Caliceti P (2010) In situ growth of side-chain PEG polymers from functionalized human growth hormone—a new technique for preparation of enhanced protein-polymer conjugates. Bioconjugate Chem 21:671–678. doi: 10.1021/bc900468v Google Scholar
  67. 67.
    Gao W, Liu W, Mackay JA, Zalutsky MR, Toone EJ, Chilkoti A (2009) In situ growth of a stoichiometric PEG-like conjugate at a protein’s N-terminus with significantly improved pharmacokinetics. Proc Natl Acad Sci 106:15231–15236. doi: 10.1073/pnas.0904378106 Google Scholar
  68. 68.
    Gao W, Liu W, Christensen T, Zalutsky MR, Chilkoti A (2010) In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc Natl Acad Sci. doi: 10.1073/pnas.1006044107 Google Scholar
  69. 69.
    Li H, Li M, Yu X, Bapat AP, Sumerlin BS (2011) Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT. Polym Chem Uk 2:1531–1535Google Scholar
  70. 70.
    De P, Li M, Gondi SR, Sumerlin BS (2008) Temperature-regulated activity of responsive polymer-protein conjugates prepared by grafting-from via RAFT polymerization. J Am Chem Soc 130:11288–11289. doi: 10.1021/ja804495v Google Scholar
  71. 71.
    Hong C-Y, Pan C-Y (2006) Direct synthesis of biotinylated stimuli-responsive polymer and diblock copolymer by RAFT polymerization using biotinylated trithiocarbonate as RAFT agent. Macromolecules 39:3517–3524. doi: 10.1021/ma052593+ Google Scholar
  72. 72.
    Liu J, Bulmus V, Herlambang DL, Barner-Kowollik C, Stenzel MH, Davis TP (2007) In situ formation of protein-polymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew Chem Int Ed 46:3099–3103. doi: 10.1002/anie.200604922 Google Scholar
  73. 73.
    Hohsaka T, Sisido M (2002) Incorporation of non-natural amino acids into proteins. Curr Opin Chem Biol 6:809–815.
  74. 74.
    Katti KS, Ambre AH, Peterka N, Katti DR (2010) Use of unnatural amino acids for design of novel organomodified clays as components of nanocomposite biomaterials. Philoso Trans R Soc A 368:1963–1980. doi: 10.1098/rsta.2010.0008 Google Scholar
  75. 75.
    Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci 103:9482–9487. doi: 10.1073/pnas.0601637103 Google Scholar
  76. 76.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004:aid-anie2004>;2-5 Google Scholar
  77. 77.
    Peeler JC, Woodman BF, Averick S, Miyake-Stoner SJ, Stokes AL, Hess KR, Matyjaszewski K, Mehl RA (2010) Genetically encoded initiator for polymer growth from proteins. J Am Chem Soc 132:13575–13577. doi: 10.1021/ja104493d Google Scholar
  78. 78.
    Averick SE, Magenau AJD, Simakova A, Woodman BF, Seong A, Mehl RA, Matyjaszewski K (2011) Covalently incorporated protein-nanogels using AGET ATRP in an inverse miniemulsion. Polym Chem-Uk 2:1476–1478Google Scholar
  79. 79.
    Kulkarni S, Schilli C, Müller AHE, Hoffman AS, Stayton PS (2004) Reversible meso-scale smart polymer-protein particles of controlled sizes. Bioconjugate Chem 15:747–753. doi: 10.1021/bc034215k Google Scholar
  80. 80.
    Hoffman JM, Ebara M, Lai JJ, Hoffman AS, Folch A, Stayton PS (2010) A helical flow, circular microreactor for separating and enriching “smart” polymer-antibody capture reagents. Lab Chip 10:3130–3138Google Scholar
  81. 81.
    Hannink JM, Cornelissen JJLM, Farrera JA, Foubert P, De Schryver FC, Sommerdijk NAJM, Nolte RJM (2001) Protein-polymer hybrid amphiphiles. Angew Chem Int Ed 40:4732–4734. doi: 10.1002/1521-3773(20011217)40:24<4732:aid-anie4732>;2-p Google Scholar
  82. 82.
    Boerakker MJ, Hannink JM, Bomans PHH, Frederik PM, Nolte RJM, Meijer EM, Sommerdijk NAJM (2002) Giant amphiphiles by cofactor reconstitution. Angew Chem Int Ed 41:4239–4241. doi: 10.1002/1521-3773(20021115)41:22<4239:aid-anie4239>;2-e Google Scholar
  83. 83.
    Sun X-L, Faucher KM, Houston M, Grande D, Chaikof EL (2002) Design and synthesis of biotin chain-terminated glycopolymers for surface glycoengineering. J Am Chem Soc 124:7258–7259. doi: 10.1021/ja025788v Google Scholar
  84. 84.
    Hou S, Sun X-L, Dong C-M, Chaikof EL (2004) Facile synthesis of chain-end functionalized glycopolymers for site-specific bioconjugation. Bioconjug Chem 15:954–959. doi: 10.1021/bc0499275 Google Scholar
  85. 85.
    Bontempo D, Li RC, Ly T, Brubaker CE, Maynard HD (2005) One-step synthesis of low polydispersity, biotinylated poly(N-isopropylacrylamide) by ATRP. Chem Commun 0:4702–4704Google Scholar
  86. 86.
    Kopping JT, Tolstyka ZP, Maynard HD (2007) Telechelic aminooxy polystyrene synthesized by ATRP and ATR coupling. Macromolecules 40:8593–8599. doi: 10.1021/ma071606b Google Scholar
  87. 87.
    Tolstyka ZP, Kopping JT, Maynard HD (2007) Straightforward synthesis of cysteine-reactive telechelic polystyrene. Macromolecules 41:599–606. doi: 10.1021/ma702161q Google Scholar
  88. 88.
    Tao L, Kaddis CS, Ogorzalek Loo RR, Grover GN, Loo JA, Maynard HD (2009) Synthetic approach to homodimeric protein–polymer conjugates. Chem Commun 0:2148–2150Google Scholar
  89. 89.
    Tao L, Kaddis CS, Loo RRO, Grover GN, Loo JA, Maynard HD (2009) Synthesis of maleimide-end-functionalized star polymers and multimeric protein-polymer conjugates. Macromolecules 42:8028–8033. doi: 10.1021/ma901540p Google Scholar
  90. 90.
    Boyer C, Liu J, Bulmus V, Davis TP, Barner-Kowollik C, Stenzel MH (2008) Direct synthesis of well-defined heterotelechelic polymers for bioconjugations. Macromolecules 41:5641–5650. doi: 10.1021/ma800289u Google Scholar
  91. 91.
    Heredia KL, Grover GN, Tao L, Maynard HD (2009) Synthesis of heterotelechelic polymers for conjugation of two different proteins. Macromolecules 42:2360–2367. doi: 10.1021/ma8022712 Google Scholar
  92. 92.
    Heredia KL, Tao L, Grover GN, Maynard HD (2010) Heterotelechelic polymers for capture and release of protein-polymer conjugates. Polym Chem-Uk 1:168–170Google Scholar
  93. 93.
    Yoshimoto T, Takahashi K, Ajima A, Matsushima A, Saito Y, Tamaura Y, Inada Y (1985) Activation and stabilization of asparaginase by anti-asparaginase IgG and its Fab. FEBS Lett 183:170–172.
  94. 94.
    Zhang Y-Q, Tao M-L, Shen W-D, Mao J-P, Chen Y-h (2006) Synthesis of silk sericin peptides–L-asparaginase bioconjugates and their characterization. J Chem Technol Biotechnol 81:136–145. doi: 10.1002/jctb.1370 Google Scholar
  95. 95.
    Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Heeger AJ, Plaxco KW (2010) On the binding of cationic, water-soluble conjugated polymers to DNA: electrostatic and hydrophobic interactions. J Am Chem Soc 132:1252–1254. doi: 10.1021/ja908890q Google Scholar
  96. 96.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237. doi: 10.1126/science.277.5330.1232 Google Scholar
  97. 97.
    Okada T, Uto K, Sasai M, Lee CM, Ebara M, Aoyagi T (2013) Nano-decoration of Hemagglutinating Virus of Japan Envelope (HVJ-E) using Layer-by-Layer Assembly Technique. Langmuir 29:7384–7392. doi: 10.1021/la304572s Google Scholar
  98. 98.
    Carlos Rodríguez-Cabello J, Reguera J, Girotti A, Alonso M, Testera AM (2005) Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach. Prog Polym Sci 30:1119–1145.
  99. 99.
    Urry DW (2004) The change in Gibbs free energy for hydrophobic association: derivation and evaluation by means of inverse temperature transitions. Chem Phys Lett 399:177–183.
  100. 100.
    Meyer DE, Kong GA, Dewhirst MW, Zalutsky MR, Chilkoti A (2001) Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 61:1548–1554Google Scholar
  101. 101.
    Kostal J, Mulchandani A, Chen W (2001) Tunable biopolymers for heavy metal removal. Macromolecules 34:2257–2261. doi: 10.1021/ma001973m Google Scholar
  102. 102.
    Wan X, Zhang G, Ge Z, Narain R, Liu S (2011) Construction of polymer-protein bioconjugates with varying chain topologies: polymer molecular weight and steric hindrance effects. Chem Asian J 6:2835-2845. doi: 10.1002/asia.201100489
  103. 103.
    Yan M, Ge J, Dong W, Liu Z, Ouyang P (2006) Preparation and characterization of a temperature-sensitive sulfobetaine polymer–trypsin conjugate. Biochem Eng J 30:48–54.
  104. 104.
    Sharma S, Kaur P, Jain A, Rajeswari MR, Gupta MN (2003) A smart bioconjugate of chymotrypsin. Biomacromolecules 4:330–336. doi: 10.1021/bm0256799 Google Scholar
  105. 105.
    Pan LC, Chien CC (2003) A novel application of thermo-responsive polymer to affinity precipitation of polysaccharide. J Biochem Bioph Methods 55:87–94.
  106. 106.
    Anastase-Ravion S, Ding Z, Pellé A, Hoffman AS, Letourneur D (2001) New antibody purification procedure using a thermally responsive poly(N-isopropylacrylamide)–dextran derivative conjugate. J Chromatogr B: Biomed Sci Appl 761:247–254.
  107. 107.
    Chang C-W, Nguyen TH, Maynard HD (2010) Thermoprecipitation of glutathione S-transferase by glutathione–poly(N-isopropylacrylamide) Prepared by RAFT Polymerization. Macromol Rapid Commun 31:1691–1695. doi: 10.1002/marc.201000333 Google Scholar
  108. 108.
    Mattiasson B, Kumar A, Galaev IY (1998) Affinity precipitation of proteins: design criteria for an efficient polymer. J Mol Recognit 11:211–216. doi: 10.1002/(sici)1099-1352(199812)11:1/6<211:aid-jmr425>;2-y Google Scholar
  109. 109.
    Galaev IY, Mattiasson B (1993) Affinity thermoprecipitation: contribution of the efficiency of ligand–protein interaction and access of the ligand. Biotechnol Bioeng 41:1101–1106. doi: 10.1002/bit.260411113 Google Scholar
  110. 110.
    Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237.
  111. 111.
    Kumar A, Wahlund P-O, Kepka C, Galaev IY, Mattiasson B (2003) Purification of histidine-tagged single-chain Fv-antibody fragments by metal chelate affinity precipitation using thermoresponsive copolymers. Biotechnol Bioeng 84:494–503. doi: 10.1002/bit.10810 Google Scholar
  112. 112.
    Balan S, Murphy J, Galaev I, Kumar A, Fox G, Mattiasson B, Willson R (2003) Metal chelate affinity precipitation of RNA and purification of plasmid DNA. Biotechnol Lett 25:1111–1116. doi: 10.1023/a:1024148316322 Google Scholar
  113. 113.
    Murphy JC, Jewell DL, White KI, Fox GE, Willson RC (2003) Nucleic Acid Separations Utilizing Immobilized Metal Affinity Chromatography. Biotechnol Progr 19:982–986. doi: 10.1021/bp025563o Google Scholar
  114. 114.
    Ding Z, Long CJ, Hayashi Y, Bulmus EV, Hoffman AS, Stayton PS (1999) Temperature control of biotin binding and release with a streptavidin-poly(N-isopropylacrylamide) site-specific conjugate. Bioconjug Chem 10:395–400. doi: 10.1021/bc980108s Google Scholar
  115. 115.
    Bulmus V, Ding Z, Long CJ, Stayton PS, Hoffman AS (1999) Site-specific polymer–streptavidin bioconjugate for ph-controlled binding and triggered release of biotin. Bioconjug Chem 11:78–83. doi: 10.1021/bc9901043 Google Scholar
  116. 116.
    Shimoboji T, Ding Z, Stayton PS, Hoffman AS (2001) Mechanistic investigation of smart polymer-protein conjugates. Bioconjug Chem 12:314–319. doi: 10.1021/bc000107b Google Scholar
  117. 117.
    Shimoboji T, Larenas E, Fowler T, Hoffman AS, Stayton PS (2003) Temperature-induced switching of enzyme activity with smart polymer–enzyme conjugates. Bioconjug Chem 14:517–525. doi: 10.1021/bc025615v Google Scholar
  118. 118.
    Hohsaka T, Kawashima K, Sisido M (1994) Photoswitching of NAD+-mediated enzyme reaction through photoreversible antigen-antibody reaction. J Am Chem Soc 116:413–414. doi: 10.1021/ja00080a064 Google Scholar
  119. 119.
    Murata M, Kaku W, Anada T, Soh N, Katayama Y, Maeda M (2003) Thermoresponsive DNA/polymer conjugate for intelligent antisense strategy. Chem Lett 32:266–267Google Scholar
  120. 120.
    Lackey CA, Murthy N, Press OW, Tirrell DA, Hoffman AS, Stayton PS (1999) Hemolytic activity of pH-responsive polymer-streptavidin bioconjugates. Bioconjugate Chem 10:401–405. doi: 10.1021/bc980109k Google Scholar
  121. 121.
    Jones RA, Cheung CY, Black FE, Zia JK, Stayton PS, Hoffman AS, Wilson MR (2003) Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem J 372:65–75. doi: 10.1042/bj20021945 Google Scholar
  122. 122.
    Kyriakides TR, Cheung CY, Murthy N, Bornstein P, Stayton PS, Hoffman AS (2002) pH-Sensitive polymers that enhance intracellular drug delivery in vivo. J Controlled Release 78:295–303.
  123. 123.
    Berguig GY, Convertine AJ, Shi J, Palanca-Wessels MC, Duvall CL, Pun SH, Press OW, Stayton PS (2012) Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate. Mol Pharm 9:3506–3514. doi: 10.1021/mp300338s Google Scholar
  124. 124.
    Dubé D, Francis M, Leroux J-C, Winnik FM (2002) Preparation and Tumor Cell Uptake of Poly(N-isopropylacrylamide) Folate Conjugates. Bioconjugate Chem 13:685–692. doi: 10.1021/bc010084g Google Scholar
  125. 125.
    Benoit DSW, Srinivasan S, Shubin AD, Stayton PS (2011) Synthesis of Folate-Functionalized RAFT Polymers for Targeted siRNA Delivery. Biomacromolecules 12:2708–2714. doi: 10.1021/bm200485b Google Scholar
  126. 126.
    Flanary S, Hoffman AS, Stayton PS (2009) Antigen delivery with poly(Propylacrylic acid) conjugation enhances MHC-1 presentation and t-cell activation. Bioconjug Chem 20:241–248. doi: 10.1021/bc800317a Google Scholar
  127. 127.
    Foster S, Duvall CL, Crownover EF, Hoffman AS, Stayton PS (2010) Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances cd8 t-cell production and prophylactic vaccine efficacy. Bioconjug Chem 21:2205–2212. doi: 10.1021/bc100204m Google Scholar
  128. 128.
    Albarran B, Hoffman AS, Stayton PS (2011) Efficient intracellular delivery of a pro-apoptotic peptide with a pH-responsive carrier. React Funct Polym 71:261–265.
  129. 129.
    Napoli A, Valentini M, Tirelli N, Muller M, Hubbell JA (2004) Oxidation-responsive polymeric vesicles. Nat Mater 3:183–189.
  130. 130.
    El-Sayed MEH, Hoffman AS, Stayton PS (2005) Rational design of composition and activity correlations for pH-sensitive and glutathione-reactive polymer therapeutics. J Controlled Release 101:47–58.
  131. 131.
    Manickam DS, Oupický D (2006) Multiblock reducible copolypeptides containing histidine-rich and nuclear localization sequences for gene delivery. Bioconjug Chem 17:1395–1403. doi: 10.1021/bc060104k Google Scholar
  132. 132.
    Raucher D, Chilkoti A (2001) Enhanced Uptake of a Thermally Responsive Polypeptide by Tumor Cells in Response to Its Hyperthermia-mediated Phase Transition. Cancer Res 61:7163–7170Google Scholar
  133. 133.
    Agasti SS, Liong M, Peterson VM, Lee H, Weissleder R (2012) Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells. J Am Chem Soc 134:18499–18502. doi: 10.1021/ja307689w Google Scholar
  134. 134.
    Maeda M (2006) Sequence-specific aggregation behavior of DNA-carrying colloidal nanoparticles prepared from poly(N-isopropylacrylamide)-graft-oligodeoxyribonucleotide. Polym J 38:1099–1104Google Scholar
  135. 135.
    Mori T, Maeda M (2001) Formation of DNA-carrying colloidal particle from poly(N-isopropylacrylamide)-graft-DNA copolymer and its assembly through hybridization. Polym J 33:830Google Scholar
  136. 136.
    Mori T, Maeda M (2002) Stability change of DNA-carrying colloidal particle induced by hybridization with target DNA. Polym J 34:624Google Scholar
  137. 137.
    Marie Dupuy A, Lehmann S, Paul Cristol J (2005) Protein biochip systems for the clinical laboratory. Clin Chem Lab Med 43:1291–1302. doi: 10.1515/cclm.2005.223
  138. 138.
    Toner M, Irimia D (2005) Blood-on-a-Chip. Annu Rev Biomed Eng 7:77–103. doi: 10.1146/annurev.bioeng.7.011205.135108 Google Scholar
  139. 139.
    Malmstadt N, Hoffman AS, Stayton PS (2004) “Smart” mobile affinity matrix for microfluidic immunoassays. Lab Chip 4:412–415Google Scholar
  140. 140.
    Malmstadt N, Yager P, Hoffman AS, Stayton PS (2003) A smart microfluidic affinity chromatography matrix composed of poly(N-isopropylacrylamide)-coated beads. Anal Chem 75:2943–2949. doi: 10.1021/ac034274r Google Scholar
  141. 141.
    Ebara M, Hoffman JM, Hoffman AS, Stayton PS (2006) Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab Chip 6:843–848Google Scholar
  142. 142.
    Ebara M, Hoffman JM, Stayton PS, Hoffman AS (2007) Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and ‘smart’ polymers. Radiat Phys Chem 76:1409–1413.
  143. 143.
    Ebara M, Hoffman AS, Stayton PS, Lai JJ (2013) A photo-induced nanoparticle separation in microchannels via pH-sensitive surface traps. Langmuir 29:5388–5393. doi: 10.1021/la400347r Google Scholar
  144. 144.
    Lai JJ, Hoffman JM, Ebara M, Hoffman AS, Estournès C, Wattiaux A, Stayton PS (2007) Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir 23:7385–7391. doi: 10.1021/la062527g Google Scholar
  145. 145.
    Lai JJ, Nelson KE, Nash MA, Hoffman AS, Yager P, Stayton PS (2009) Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip 9:1997–2002Google Scholar

Copyright information

© National Institute for Materials Science, Japan. Published by Springer Japan 2014

Authors and Affiliations

  • Mitsuhiro Ebara
    • 1
  • Yohei Kotsuchibashi
    • 1
  • Koichiro Uto
    • 1
  • Takao Aoyagi
    • 1
  • Young-Jin Kim
    • 2
  • Ravin Narain
    • 3
  • Naokazu Idota
    • 4
  • John M. Hoffman
    • 5
  1. 1.National Institute for Materials ScienceTsukubaJapan
  2. 2.The University of TokyoTokyoJapan
  3. 3.University of AlbertaEdmontonCanada
  4. 4.Waseda UniversityShinjuku-kuJapan
  5. 5.Stratos GenomicsWorld Trade Center NorthSeattleUSA

Personalised recommendations