Harness the Nature for Computation

  • Yasuhiro Suzuki
Open Access
Conference paper
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 6)

Abstract

Natural computing investigates and models computational techniques inspired by nature and attempts to understand natural phenomena as information processing. In this position paper, we consider harness the nature for computation, from the perspective of natural computing. We investigated facsimile computational models of self- organization in nature, and identified dissipation of information flow as a common mechanism, where intermediate information is produced through interactions and consumed through evoking novel interactions. Based on this mechanism, we propose the concept of a harness: an indirect controlling method for natural systems. We realize this concept through a computational model, and discuss how this concept has already been successfully applied in medical and ecological science.

Keywords

Harness Dissipation of Information Self-organization 

References

  1. 1.
    Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries, a review. Artif. Life 7(3), 225–275 (2001)CrossRefGoogle Scholar
  2. 2.
    Jain, S., Krishna, S.: A model for the emergence of cooperation, interdependence, and structure in evolving networks. Proc. Nat. Acad. Sci. 98(2), 543–547 (2001)CrossRefGoogle Scholar
  3. 3.
    Field, R.J., Burger, M.: Oscillation and Traveling Waves in Chemical Systems. Willey, New York (1985)Google Scholar
  4. 4.
    Ganti, T.: Organization of chemical reactions into dividing and metabolizing units: the chemotons. BioSystems 7, 15–21 (1975)CrossRefGoogle Scholar
  5. 5.
    Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comp. Phys. 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kakimoto, K., Taura, T.: A framework for analyzing sustainability by using the rewriting system. In: Pro. Intern. Symp. on Environmentally Conscious Design and Inverse Manufacturing, vol. 3, pp. 69–74. IEEE (2003)Google Scholar
  7. 7.
    Kakimoto, K., Shiose, T., Taura, T.: Analyzing Sustainability of Circulatory System by Using the Rewriting System. In: Proceedings of EcoDesign: 2nd International Symposium on Environmental Conscious Design and Inverse Manufacturing, pp. S103–S107. IEEE (2001)Google Scholar
  8. 8.
    Luisi, P.L.: Defining the transition to life: self-replicating bounded structures and chemical autopoiesis. In: Stein, W., Varela, F. (eds.) Thinking About Biology. Addison-Wesley, New York (1993)Google Scholar
  9. 9.
    Luisi, P.L., Varela, F.: Self-replicating micelles: a chemical version of minimal autopoietic systems. Origins Life Evol. Biosphere 19, 633–643 (1989)CrossRefGoogle Scholar
  10. 10.
    International Journal of Natural Computing. SpringerGoogle Scholar
  11. 11.
    Nicolis, G., Prigogine, I.: Exploring Complexity, An Introduction. Freeman and Company, San Francisco (1989)Google Scholar
  12. 12.
    Skovbjerg, S., Roos, K., Holm, S.E., et al.: Spray bacteriotherapy decreases middle ear fluid in children with secretory otitis media. Arch Dis. Child (August 19, 2008), doi:10.1136/adc.2008.137414Google Scholar
  13. 13.
    Suzuki, H.: An Approach to Biological Computation: Unicellular Core-Memory Creatures Evolved Using Genetic Algorithms. Artificial Life 5(4), 367–386 (2000)CrossRefGoogle Scholar
  14. 14.
    Suzuki, Y., Tsumoto, S., Tanaka, H.: Analysis of Cycles in Symbolic Chemical System based on Abstract Rewriting System on Multisets. In: Proceedings of International Conference on Artificial Life V, pp. 482–489. MIT Press (1996)Google Scholar
  15. 15.
    Suzuki, Y., Tanaka, H.: Order parameter for symbolic chemical system. In: Adami, C., et al. (eds.) Artificial Life IV, pp. 130–142. MIT Press (1998)Google Scholar
  16. 16.
    Suzuki, Y., Tanaka, H.: Chemical evolution among artificial proto-cells. In: Artificial Life VII, pp. 54–64. MIT Press (2000)Google Scholar
  17. 17.
    Suzuki, Y., Fujiwara, Y., Takabayashi, J., Tanaka, H.: Artificial Life Applications of a Class of P Systems: Abstract Rewriting Systems on Multisets. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 299–346. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Suzuki, Y., Takabayashi, J., Tanaka, H.: Investigation of tritrophic interactions in an ecosystem using abstract chemistry. J. Artif. and Robot. 6(3), 219–223 (2001)Google Scholar
  19. 19.
    Suzuki, Y., Davis, P., Tanaka, H.: Emergence of auto-catalytic structure in stochastic self-reinforcing reaction networks. J. Artif. and Robot. 7, 210–213 (2003)CrossRefGoogle Scholar
  20. 20.
    Suzuki, Y., Tanaka, H.: Modeling P53 signaling network by using multiset processing. Applications of Membrane Computing Series: Natural Computing Series, pp. 203–215. Springer, Tokyo (2006)Google Scholar
  21. 21.
    Suzuki, Y.: An investigation of the Brusselator on the mesoscopic scale Inter. J. of Parallel, Emergent and Distributed Sys. 22(2), 91–102 (2007)CrossRefMATHGoogle Scholar
  22. 22.
    Urano, S., Uefune, M., Takabayashi, J.: Inspection example of the diamondback moth prevention - effect with natural enemy attractant “bee cool”. In: 18th, Special Interest Group meeting of Natural Enemy Usage, The Japanese Society of Applied Entomology & Zoology (2008)Google Scholar
  23. 23.
    Walde, P., Goto, A., Monnard, P.A., Wessicken, M., Luisi, P.L.: Oparin’s reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J. Am. Chem. Soc. 116, 7541 (1994b)CrossRefGoogle Scholar

Copyright information

© Springer Tokyo 2013

Authors and Affiliations

  • Yasuhiro Suzuki
    • 1
  1. 1.Department of Complex Systems Science, Graduate School of Information ScienceNagoya UniversityNagoya CityJapan

Personalised recommendations