Advertisement

Adaptive Path-Finding and Transport Network Formation by the Amoeba-Like Organism Physarum

  • Itsuki Kunita
  • Kazunori Yoshihara
  • Atsushi Tero
  • Kentaro Ito
  • Chiu Fan Lee
  • Mark D. Fricker
  • Toshiyuki Nakagaki
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 6)

Abstract

The giant amoeba-like plasmodia of Physarum is able to solve the shortest path through a maze and construct near optimal functional networks between multiple, spatially distributed food-sources. These phenomena are interesting as they provide clues to potential biological computational algorithms that operate in a de-centralized, single-celled system. We report here some factors that can affect path-finding through networks. These findings help us to understand more generally how the organism tries to establish an optimal set of paths in more complex environments and how this behaviour can be captured in relatively simple algorithms.

Keywords

Physarum combinatorial optimization subcellular computing primitive intelligence 

References

  1. 1.
    Nakagaki, T.: Ph. D. thesis in Nagoya University, Japan (1997), http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/34739?locale=en&lang=en
  2. 2.
    Nakagaki, T., Yamada, H., Tóth, Á.: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)CrossRefGoogle Scholar
  3. 3.
    Nakagaki, T., Yamada, H., Tóth, Á.: Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92, 47–52 (2001)CrossRefGoogle Scholar
  4. 4.
    Nakagaki, T.: Smart behavior of true slime mold in labyrinth. Res. Microbiol. 152, 767–770 (2001)CrossRefGoogle Scholar
  5. 5.
    Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver -A biologically inspired method for road-network navigation-. Physica A363, 115 (2006)CrossRefGoogle Scholar
  6. 6.
    Tero, A., Kobayashi, R., Nakagaki, T.: Mathematical model for adaptive transport network in path finding by true slime mold. J. Theor. Biol. 244, 553–564 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophys. Chem. 107, 1–5 (2004)CrossRefGoogle Scholar
  8. 8.
    Nakagaki, T., Kobayashi, R., Ueda, T., Nishiura, Y.: Obtaining multiple separate food sources: behavioral intelligence in the Physarum plasmodium. Proc. R. Soc. Lond. B 271, 2305–2310 (2004)CrossRefGoogle Scholar
  9. 9.
    Tero, A., Yumiki, K., Kobayashi, R., Saigusa, T., Nakagaki, T.: Flow-network adaptation in Physarum amoebae. Theory in Biosciences 127, 89–94 (2008)CrossRefGoogle Scholar
  10. 10.
    Tero, A., Nakagaki, T., Toyabe, K., Yumiki, K., Kobayashi, R.: A method inspired by Physarum for solving the Steiner problem. International Journal of Unconventional Computing 6, 109–123 (2010)Google Scholar
  11. 11.
    Tero, A., Takagi, T., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, Y., Kobayashi, R., Nakagaki, T.: Rules for biologically-inspired adaptive network design. Science 327, 439–442 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nakagaki, T., Saigusa, T., Tero, A., Kobayashi, R.: Effects of food amount on path selection in transport network of an amoeboid organism. Topological Aspects of Critical Systems and Networks, 94–100 (2007)Google Scholar
  13. 13.
    Watanabe, S., Tero, A., Takamatsu, A., Nakagaki, T.: Traffic optimization in railroad networks using an algorithm mimicking an amoeba-like organism. Physarum Plasmodium, Biosystems 105, 225–232 (2011)CrossRefGoogle Scholar
  14. 14.
    Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., Showalter, K.: Minimum-risk path finding by an adaptive amoebal network. Phys. Rev. Lett. 99, 068104 (2007)Google Scholar
  15. 15.
    Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction pattern. Biophys. Chem. 84, 195–204 (2000)CrossRefGoogle Scholar
  16. 16.
    Nakagaki, T., Guy, R.: Intelligent behaviors of amoeboid movement based on complex dynamics of soft matter. Soft Matter 4, 1–12 (2008)CrossRefGoogle Scholar
  17. 17.
    Nakagaki, T., Tero, A., Kobayashi, R., Onishi, I., Miyaji, T.: Computational ability of cells based on cell dynamics and adaptability. New Generation Computing 27, 57–81 (2008)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Itsuki Kunita
    • 1
  • Kazunori Yoshihara
    • 1
  • Atsushi Tero
    • 2
  • Kentaro Ito
    • 3
  • Chiu Fan Lee
    • 4
  • Mark D. Fricker
    • 5
  • Toshiyuki Nakagaki
    • 1
    • 6
  1. 1.Department of Complex and Intelligent Systems, Faculty of Systems Information ScienceFuture University of HakodateHakodateJapan
  2. 2.Institute of Mathematics for IndustryKyushu UniversityNishi-kuJapan
  3. 3.Department of Mathematical and Life Sciences, Faculty of ScienceHiroshima UniversityJapan
  4. 4.Department of BioengineeringImperial College LondonLondonUK
  5. 5.Department of Plant ScienceUniversity of OxfordOxfordUK
  6. 6.JST, CRESTChiyoda-kuJapan

Personalised recommendations