Advertisement

GIS Landslide pp 135-159 | Cite as

Landslide Inventory: Challenge for Landslide Hazard Assessment in Indonesia

  • Ngadisih
  • Guruh Samodra
  • Netra Prakash Bhandary
  • Ryuichi Yatabe
Chapter

Abstract

Landslide occurs almost every year in Indonesia which causes tremendous damages to life and properties. Landslide hazard map would allow the identification of hazard regions for the implementation of mitigation which can minimize the loss of human life and property from future landslide occurrences. Currently, the Indonesian Government and research entities as well as academic institutions are trying to develop landslide hazard assessment model for the prone area to support prevention program, mitigation action, and evacuation plan. However, there is a lack of attention in the landslide inventory mapping as a basic input of landslide hazard mapping. Ideally, landslide inventory mapping provides detailed information about the spatiotemporal distribution of landslide occurrence. It contains the date of occurrence, types, failure mechanisms, area/volume, depth, and so on. Landslide inventory map can be prepared by several methods such as image interpretation, remote sensing techniques, detailed geomorphological fieldwork, historical archive studies, interview, and combination among several methods. The aim of this paper is to review the possibility of using various methods of inventory in Indonesia. Furthermore, this paper is also purposed to explore the use of existing landslide database for producing a landslide inventory that can be used to assess landslide hazard.

Keywords

Landslide inventory Challenge Hazard Indonesia 

References

  1. Antonini G, Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2002) Surface deposits and landslide inventory map of the area affected by the 1997 Umbria–Marche earthquakes. In: Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. doi: 10.1016/j.earscirev.2012.02.001
  2. Antonini G, Ardizzone F, Cacciano M, Cardinali M, Castellani M, Galli M, Guzzetti F, Reichenbach P, Salvati P (2002) In: Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. doi: 10.1016/j.earscirev.2012.02.001
  3. Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat Hazards Earth Syst Sci 7:637–650CrossRefGoogle Scholar
  4. Ayalew L, Yamagishi H (2005) The application of GIS based logistic regression for landslide susceptibility mapping in Kakudo-Yohiko Mountains Central Japan. Geomorphology 65:15–31. doi: 10.1016/j.enggeo.2005.08.004 CrossRefGoogle Scholar
  5. Bai S-B, Wong J, Lu G-N, Zhou P, Hou S-S, Xu S-N (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three Gorges area, China. Geomorphology 115:23–31. doi: 10.1016/j.geomorph.2009.09.025 CrossRefGoogle Scholar
  6. Blahut J, van Westen CJ, Sterlacchini S (2010) Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 109:36–51. doi: 10.1016/j.geomorph.2010.02.017 CrossRefGoogle Scholar
  7. Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high-resolution topographic data: Puegt Sound lowlands, Washington, and Dortland Hills, Oregon. Geomorphology 109:132–147. doi: 10.1016/j.geomorph.2009.02.027 CrossRefGoogle Scholar
  8. Brardinoni F, Slaymaker O, Hassan MA (2003) Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data. Geomorphology 54:179–196CrossRefGoogle Scholar
  9. Brunsden D (1985) Landslide types, mechanisms, recognition, identification. In: Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. doi: 10.1016/j.earscirev.2012.02.001
  10. Cardinali M, Guzetti F, Brabb EE (1990) Prelimary map showing landslide deposits and related features in New Mexico U.S. geological survey open file. Report 90(293):4Google Scholar
  11. Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2001) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2:57–72CrossRefGoogle Scholar
  12. Carrara A, Cardinali M, Guzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Piancentini D, Troiani F, Soldati M, Notarnicola C, Savelli D, Schneiderbauer S, Strada C (2012) Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (South-eastern Alps, Italy). Geomorphology 151–152:196–206. doi: 10.1016/j.geomorph.2012.02.003
  13. Carson MA, Kirkby MJ (1972) Hillslope form and process. Cambridge University Press. 475 ppGoogle Scholar
  14. Cepeda J, Smebye H, Vangelsten B, Nadim F, Muslim D (2010) Landslide risk in Indonesia. Global assessment report on disaster risk reduction, ISDRGoogle Scholar
  15. Chacón J, Irigaray C, Fernández T, El HR (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411. doi: 10.1007/s10064-006-0064-z CrossRefGoogle Scholar
  16. Chang K-T, Chiang S-H, Hsu M-L (2007) Modeling typhoon and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347. doi: 10.1016/j.geomorph.2006.12.011 CrossRefGoogle Scholar
  17. Choi J, Oh H-J, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial networks models using ASTER images and GIS. Eng Geol 124:12–23. doi: 10.1016/j.enggeo.2011.09.011 CrossRefGoogle Scholar
  18. Christanto N, Hadmoko DS, van Westen CJ, Lavigne F, Sartohadi J, Setiawan MA (2009) Characteristic and behavior of rainfall induced landslides in Java island, Indonesia: an overview. Geophys Res Abstr 11:EGU2009-4069-7Google Scholar
  19. Coe JA, Michael JA, Crovelli RA, Savage WZ (2000) Preliminary map showing landslide densities, mean recurrence intervals, and exceedance probabilities as determined from historic records, Seattle, Washington. United States geological survey open file report 00-303Google Scholar
  20. Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213. doi: 10.1016/j.enggeo.2008.03.018 CrossRefGoogle Scholar
  21. Crovelli RA (2000) Probability models for estimation of number and costs of landslides. USGS Denver, ColoradoGoogle Scholar
  22. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. doi: 10.1016/j.earscirev.2012.02.001
  23. Dahal RK, Hasegawa S, Bhandary NP, Poudel PP, Nonomura A, Yatabe R (2012) A replication of landslide hazard mapping at catchment scale. Geomat Nat Hazards Risk 3(2):161–192. doi: 10.1080/19475705.2011.629007 CrossRefGoogle Scholar
  24. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island Hongkong. Geomorphology 42:213–228. PII: S0169-555X(01)00087-3Google Scholar
  25. Dikau R, Cavallin A, Jäger S (1996) Databases and GIS for landslide research in Europe. Geomorphology 15:227–239. doi:0169-555X(95)00072.0
  26. Dumana TY, Tolga Can T, Emrea Ö, Kecera M, Dogana A, Ates X, Durmaza S (2005) Landslide inventory of northwestern Anatolia, Turkey. Eng Geol 77:99–114. doi: 10.1016/j.enggeo.2004.08.005 CrossRefGoogle Scholar
  27. Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility. Geomorphology 66:327–343. doi: 10.1016/j.geomorph.2004.09.025 CrossRefGoogle Scholar
  28. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard, risk zoning for land-use planning. Eng Geol 102:99–111. doi: 10.1016/j.enggeo.2008.03.014 CrossRefGoogle Scholar
  29. Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini AC, Santurri L, Ardizzone F, Guzzetti F (2011) Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 129:59–70. doi: 10.1016/j.geomorph.2011.01.013 CrossRefGoogle Scholar
  30. Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Experimental acute renal failure. Dissertation, University of California. Comparing landslide inventory maps. Geomorphology 94:268–289. doi: 10.1016/j.geomorph.2006.09.023 CrossRefGoogle Scholar
  31. Garcia-Rodriguez MJ, Malpica JA, Benito B, Diaz M (2008) Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology 95:172–191. doi: 10.1016/j.geomorph.2007.06.001 CrossRefGoogle Scholar
  32. Glade T (1998) Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environ Geol 35:160–174CrossRefGoogle Scholar
  33. Glade T, Anderson M, Crozier MJ (2005) Landslide hazard and riks. Wiley, NJ. doi:  10.1002/9780470012659
  34. Glenn NF, David R, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148. doi: 10.1016/j.geomorph.2005.07.006 CrossRefGoogle Scholar
  35. Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102:214–226. doi: 10.1016/j.enggeo.2008.03.019 CrossRefGoogle Scholar
  36. Guhtrie RH, Evans SG (2004) Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf Process Landforms 29:1321–1339. doi: 10.1002/esp.1095 CrossRefGoogle Scholar
  37. Guzetti F, Carrara A, Cardinali M, Peinchenbach P (1999) Landslide hazard evaluation, a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. PII: S0169-555x(99)00078-1Google Scholar
  38. Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy. Environ Manag 25(3):247–363CrossRefGoogle Scholar
  39. Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in central Italy. Earth Planet Sci Lett 195:169–183CrossRefGoogle Scholar
  40. Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299CrossRefGoogle Scholar
  41. Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006) Landslide hazard assessment in the Collazzone area, Umbria, central Italy. Nat Hazards Earth Syst Sci 6:115–131CrossRefGoogle Scholar
  42. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. doi: 10.1016/j.earscirev.2012.02.001 CrossRefGoogle Scholar
  43. Hadmoko DS, Lavigne F, Sartohadi J, Hadi P, Winaryo (2010) Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta province, Indonesia. Nat Hazards 54:623–642. doi: 10.1007/s11069-009-9490-0 CrossRefGoogle Scholar
  44. Hutchitson JN (1968) Mass Movement. The encyclopedia of geomorphology. R.W. Fairbridge, Reinold, pp 688–695Google Scholar
  45. Karnawati D, Fathani TF, Wilopo W, Setianto A, Andayani B (2006) Promoting the hybrid socio-technical approach for effective disaster risk reduction in developing countries. doi:495/DMAN110161
  46. Kasai M, Ikeda M, Asahina T, Fujisawa K (2009) LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 113:57–69. doi: 10.1016/j.geomorph.2009.06.004 CrossRefGoogle Scholar
  47. Kirschbaum DD, Adler R, Hong Y, Hill S, Lerner-Lam L (2009) A global landslide catalog for hazard applications-methods, results and limitations. Nat Hazards. doi: 10.1007/s11069-009-9401-4 Google Scholar
  48. Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Int Consort Landslide 4(1):33–41. doi: 10.1007/s10346-006-0047-y CrossRefGoogle Scholar
  49. Malamud BD, Turcotte DL, Guzetti F, Reichernbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landforms 29:687–711. doi: 10.1002/esp.1064 CrossRefGoogle Scholar
  50. Marcelino EV, Formaggio AR, Maeda EE (2009) Landslide inventory using image fusion techniques in Brazil. Appl Earth Obs Geoinf 11:181–191. doi: 10.1016/j.jag.2009.01.003 CrossRefGoogle Scholar
  51. Marfai MA, King L, Singh LP, Mardiatno D, Sartohadi J, Hadmoko DS, Dewi A (2008) Natural hazards in Central Java Province, Indonesia: an overview. Environ Geol 56:335–351. doi: 10.1007/s00254-007-1169-9 CrossRefGoogle Scholar
  52. Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36. doi: 10.1016/j.geomorph.2009.10.004 CrossRefGoogle Scholar
  53. McKeana J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351. doi:  10.1016/S0169-555X(03)00164-8
  54. Muraoka H, Nasution A, Simanjuntak J, Dwipa S, Takahashi M, Takahashi H, Matsuda K, Sueyoshi Y (2004) Geology and geothermal systems in the Bajawa volcanic rift zone, Flores, Eastern Indonesia. In: proceedings world geothermal congress 2005 Antalya, Turkey, 24–29 Apr 2005Google Scholar
  55. Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20. doi: 10.1016/j.enggeo.2009.10.001 CrossRefGoogle Scholar
  56. Önöz B, Bayazit M (2001) Effect of the occurrence process of the peaks over threshold on the flood estimates. J Hydrol 24:86–96. PII: S0022-1694(01)00330-4Google Scholar
  57. Parise M (2001) Landslide mapping techniques and their USA in the assessment of the landslide hazard. Phys Chem Earth (C) 26(9):697–703. doi:1464-1917/O1/$
  58. Pradhan B (2010) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45:1244–1256. doi: 10.1016/j.asr.2010.01.006 CrossRefGoogle Scholar
  59. Razak KA, Straatsma MW, van Westen CJ, Malet J-P, de Jong SM (2011) Airborne laser scanning of forested landslides characterization: terrain model quality and visualization. Geomorphology 126:186–200. doi: 10.1016/j.geomorph.2010.11.003 CrossRefGoogle Scholar
  60. Reichenbach P, Guzzetti F, Cardinali M (1998) Map of sites historically affected by landslides and floods in Italy, 2nd ed. CNR Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche Publication n. 1786Google Scholar
  61. Reichenbach P, Galli M, Cardinalli M, Guzetti F, Ardizzone F (2005) Geomorphological mapping to assess landslide risk: concepts, methods and applications in the Umbria Region of central Italy. Landslide risk assessment. In: Anderson MG, Crozier MJ (eds) Glade T. Wiley, West SussexGoogle Scholar
  62. Salvati P, Guzzetti F, Reichenbach P, Cardinali M, Stark CP (2003) Map of landslides and floods with human consequences in Italy, CNR Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche Publication n. 2822Google Scholar
  63. Salvati P, Balducci V, Bianchi C, Guzetti F, Tonelli G (2009) A WebGIS for the desimination of information on historical landslides and floods in Umbria, Italy. GeoInformatica 13:305–322CrossRefGoogle Scholar
  64. Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Piancentini D, Troiani F, Soldati M, Notarnicola C, Savelli D, Schneiderbauer S, Strada C (2012) Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (South-eastern Alps, Italy). Geomorphology 151–152:196–206. doi: 10.1016/j.geomorph.2012.02.003
  65. Stark CP, Hovius N (2001) The characterization of landslide size distributions. Geophys Res Lett 28(6):1091–1094. doi:0094-8276/01/2000GL008527505.00
  66. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Moeyersons J, Nyssen J, Van Beek LPH (2005) The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67:351–363. doi: 10.1016/j.geomorph.2004.11.001 CrossRefGoogle Scholar
  67. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Process Landforms 32:754–769. doi: 10.1002/esp.1417 CrossRefGoogle Scholar
  68. van Westen CJ, Van Asch TWJ, Soeters R (2005) Landslide hazard and risk zonation; why is it still so difficult? Bull Eng Geol Env 65(2):167–184. doi: 10.1007/s10064-005-0023-0 CrossRefGoogle Scholar
  69. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131. doi: 10.1016/j.enggeo.2008.03.010 CrossRefGoogle Scholar
  70. Varnes DJ (1978) Slope movement types and processes. In: Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66. doi: 10.1016/j.earscirev.2012.02.001
  71. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. UNESCO Press, ParisGoogle Scholar
  72. Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A-GIS based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistic regression for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85:274–287. doi: 10.1016/j.catena.2011.01.014 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Ngadisih
    • 1
    • 2
  • Guruh Samodra
    • 3
    • 4
  • Netra Prakash Bhandary
    • 1
  • Ryuichi Yatabe
    • 1
  1. 1.Graduate School of Science and EngineeringEhime UniversityMatsuyamaJapan
  2. 2.Department of Agricultural and Biosystem Engineering, Faculty of Agricultural TechnologyGadjah Mada UniversityYogyakartaIndonesia
  3. 3.Graduate School of EngineeringKyushu UniversityFukuokaJapan
  4. 4.Department of Environmental Geography, Faculty of GeographyGadjah Mada UniversityYogyakartaIndonesia

Personalised recommendations