Skip to main content

Assessment of Vascular Function by Using Cardiac Catheterization

  • Chapter
  • First Online:
Book cover Congenital Heart Disease

Abstract

Despite marked advances in cardiovascular surgery and perioperative management, children with congenital heart disease still experience many problems in their adult life. One of the issues that should be resolved is progressive heart failure toward adolescence. During cardiac catheterization, the parameters of cardiac function and vascular function, according to which the best strategy for patients could be chosen, are obtained. These data are useful for elucidating the hemodynamic features of specific structural heart disease and could clarify the mechanisms of heart failure even in children. However, vascular function tends to be overlooked as a factor for worsening heart failure in view of the long term, and only a few comprehensive reviews are available in the field of congenital heart disease.

This chapter summarizes the currently available methods for evaluating vascular function, especially based on catheterization laboratory examination in children. The first part of this chapter discusses the direct and load-independent arterial characteristics of vessels, which provide convincing information for clinical study and for predicting hemodynamic changes corresponding to changes in loading status. In the latter part, indirect evaluation of vessels is presented, which can be useful in real-time decision making in a catheterization laboratory. Last, we also discuss the venous and minor vessel functions that can affect organ congestion and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kass DA (2005) Ventricular arterial stiffening: integrating the pathophysiology. Hypertension 46:185–193

    Article  CAS  PubMed  Google Scholar 

  2. Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA (1998) Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol 32:1221–1227

    Article  CAS  PubMed  Google Scholar 

  3. Kelly RP, Ting CT, Yang TM et al (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:513–521

    Article  CAS  PubMed  Google Scholar 

  4. Ronco C, Cicoira M, McCullough PA (2012) Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol 60:1031–1042

    Article  PubMed  Google Scholar 

  5. Verbrugge FH, Dupont M, Steels P et al (2013) Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 62:485–495

    Article  PubMed  Google Scholar 

  6. Aronson D, Abassi Z, Allon E, Burger AJ (2013) Fluid loss, venous congestion, and worsening renal function in acute decompensated heart failure. Eur J Heart Fail 15:637–643

    Article  CAS  PubMed  Google Scholar 

  7. Moller S, Bernardi M (2013) Interactions of the heart and the liver. Eur Heart J 34:2804–2811

    Article  PubMed  Google Scholar 

  8. Price JF, Mott AR, Dickerson HA et al (2008) Worsening renal function in children hospitalized with decompensated heart failure: evidence for a pediatric cardiorenal syndrome? Pediatr Crit Care Med 9:279–284

    Article  PubMed  Google Scholar 

  9. Butera G, Marini D, MacDonald ST (2011) Protein-losing enteropathy resolved by percutaneous intervention. Catheter Cardiovasc Interv 78:584–588

    Article  PubMed  Google Scholar 

  10. Ou P, Celermajer DS, Jolivet O et al (2008) Increased central aortic stiffness and left ventricular mass in normotensive young subjects after successful coarctation repair. Am Heart J 155:187–193

    Article  PubMed  Google Scholar 

  11. Trojnarska O, Mizia-Stec K, Gabriel M et al (2011) Parameters of arterial function and structure in adult patients after coarctation repair. Heart Vessels 26:414–420

    Article  PubMed  Google Scholar 

  12. Saiki H, Kojima T, Seki M, Masutani S, Senzaki H (2012) Marked disparity in mechanical wall properties between ascending and descending aorta in patients with tetralogy of Fallot. Eur J Cardiothorac Surg 41:570–573

    Article  PubMed  Google Scholar 

  13. Seki M, Kurishima C, Kawasaki H, Masutani S, Senzaki H (2012) Aortic stiffness and aortic dilation in infants and children with tetralogy of Fallot before corrective surgery: evidence for intrinsically abnormal aortic mechanical property. Eur J Cardiothorac Surg 41:277–282

    Article  PubMed  Google Scholar 

  14. Senzaki H, Iwamoto Y, Ishido H et al (2008) Arterial haemodynamics in patients after repair of tetralogy of Fallot: influence on left ventricular after load and aortic dilatation. Heart 94:70–74

    Article  CAS  PubMed  Google Scholar 

  15. Senzaki H, Chen CH, Ishido H et al (2005) Arterial hemodynamics in patients after Kawasaki disease. Circulation 111:2119–2125

    Article  PubMed  Google Scholar 

  16. Mansour AS, Yannoutsos A, Majahalme N et al (2013) Aortic stiffness and cardiovascular risk in type 2 diabetes. J Hypertens 31:1584–1592

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell GF, Hwang SJ, Vasan RS et al (2010) Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121:505–511

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sunagawa K, Maughan WL, Sagawa K (1985) Stroke volume effect of changing arterial input impedance over selected frequency ranges. Am J Physiol 248:H477–H484

    CAS  PubMed  Google Scholar 

  19. Levy BI, Michel JB, Salzmann JL et al (1988) Effects of chronic inhibition of converting enzyme on mechanical and structural properties of arteries in rat renovascular hypertension. Circ Res 63:227–239

    Article  CAS  PubMed  Google Scholar 

  20. Huijberts MS, Wolffenbuttel BH, Boudier HA et al (1993) Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats. J Clin Invest 92:1407–1411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Dujardin JP, Stone DN (1981) Characteristic impedance of the proximal aorta determined in the time and frequency domain: a comparison. Med Biol Eng Comput 19:565–568

    Article  CAS  PubMed  Google Scholar 

  22. O’Rourke MF, Avolio AP (1980) Pulsatile flow and pressure in human systemic arteries. Studies in man and in a multibranched model of the human systemic arterial tree. Circ Res 46:363–372

    Article  PubMed  Google Scholar 

  23. O’Rourke MF, Nichols WW (2005) Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45:652–658

    Article  PubMed  Google Scholar 

  24. Laskey WK, Kussmaul WG, Martin JL, Kleaveland JP, Hirshfeld JW Jr, Shroff S (1985) Characteristics of vascular hydraulic load in patients with heart failure. Circulation 72:61–71

    Article  CAS  PubMed  Google Scholar 

  25. Stergiopulos N, Meister JJ, Westerhof N (1995) Evaluation of methods for estimation of total arterial compliance. Am J Physiol 268:H1540–H1548

    CAS  PubMed  Google Scholar 

  26. Stergiopulos N, Westerhof BE, Westerhof N (1999) Total arterial inertance as the fourth element of the windkessel model. Am J Physiol 276:H81–H88

    CAS  PubMed  Google Scholar 

  27. Schiffrin EL (2004) Vascular stiffening and arterial compliance. Implications for systolic blood pressure. Am J Hypertens 17:39S–48S

    Article  CAS  PubMed  Google Scholar 

  28. Chemla D, Nitenberg A, Teboul JL et al (2008) Subendocardial viability ratio estimated by arterial tonometry: a critical evaluation in elderly hypertensive patients with increased aortic stiffness. Clin Exp Pharmacol Physiol 35:909–915

    Article  CAS  PubMed  Google Scholar 

  29. Liu Z, Brin KP, Yin FC (1986) Estimation of total arterial compliance: an improved method and evaluation of current methods. Am J Physiol 251:H588–H600

    CAS  PubMed  Google Scholar 

  30. Chemla D, Hebert JL, Coirault C et al (1998) Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol 274:H500–H505

    CAS  PubMed  Google Scholar 

  31. Saito M, Okayama H, Nishimura K et al (2008) Possible link between large artery stiffness and coronary flow velocity reserve. Heart 94:e20

    Article  CAS  PubMed  Google Scholar 

  32. Niwa K, Perloff JK, Bhuta SM et al (2001) Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation 103:393–400

    Article  CAS  PubMed  Google Scholar 

  33. Niwa K, Siu SC, Webb GD, Gatzoulis MA (2002) Progressive aortic root dilatation in adults late after repair of tetralogy of Fallot. Circulation 106:1374–1378

    Article  PubMed  Google Scholar 

  34. Alexander J Jr, Burkhoff D, Schipke J, Sagawa K (1989) Influence of mean pressure on aortic impedance and reflections in the systemic arterial system. Am J Physiol 257:H969–H978

    PubMed  Google Scholar 

  35. Westerhof N, Westerhof BE (2013) A review of methods to determine the functional arterial parameters stiffness and resistance. J Hypertens 31:1769–1775

    Article  CAS  PubMed  Google Scholar 

  36. Mitchell GF, Lacourciere Y, Ouellet JP et al (2003) Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation 108:1592–1598

    Article  PubMed  Google Scholar 

  37. Murgo JP, Westerhof N, Giolma JP, Altobelli SA (1980) Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116

    Article  CAS  PubMed  Google Scholar 

  38. Wald RM, Redington AN, Pereira A et al (2009) Refining the assessment of pulmonary regurgitation in adults after tetralogy of Fallot repair: should we be measuring regurgitant fraction or regurgitant volume? Eur Heart J 30:356–361

    Article  PubMed  Google Scholar 

  39. Romeih S, Groenink M, van der Plas MN et al (2012) Effect of age on exercise capacity and cardiac reserve in patients with pulmonary atresia with intact ventricular septum after biventricular repair. Eur J Cardiothorac Surg 42:50–55

    Article  PubMed  Google Scholar 

  40. Hidaka N, Sugitani M, Fujita Y, Fukushima K, Tsukimori K, Wake N (2009) Preload index of the inferior vena cava as a possible predictive marker of hydropic changes in fetuses with Ebstein anomaly. J Ultrasound Med 28:1369–1374

    PubMed  Google Scholar 

  41. Senzaki H, Masutani S, Ishido H et al (2006) Cardiac rest and reserve function in patients with Fontan circulation. J Am Coll Cardiol 47:2528–2535

    Article  PubMed  Google Scholar 

  42. Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 35:123–129

    CAS  PubMed  Google Scholar 

  43. Guyton AC, Adkins LH (1954) Quantitative aspects of the collapse factor in relation to venous return. Am J Physiol 177:523–527

    CAS  PubMed  Google Scholar 

  44. Guyton AC, Lindsey AW, Abernathy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189:609–615

    CAS  PubMed  Google Scholar 

  45. Beard DA, Feigl EO (2011) Understanding Guyton’s venous return curves. Am J Physiol Heart Circ Physiol 301:H629–H633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Mace L, Dervanian P, Bourriez A et al (2000) Changes in venous return parameters associated with univentricular Fontan circulations. Am J Physiol Heart Circ Physiol 279:H2335–H2343

    CAS  PubMed  Google Scholar 

  47. Imai Y, Ito H, Minatoguchi S et al (1992) The effects of phentolamine and nitroglycerin on right-sided hemodynamics in cardiac patients can be explained by a shift of the systemic venous return curve and right-ventricular output curve. Jpn Circ J 56:801–814

    Article  CAS  PubMed  Google Scholar 

  48. Ohte N, Narita H, Sugawara M et al (2003) Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 18:107–111

    Article  PubMed  Google Scholar 

  49. Niki K, Sugawara M, Chang D et al (2002) A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 17:12–21

    Article  PubMed  Google Scholar 

  50. Bleasdale RA, Mumford CE, Campbell RI, Fraser AG, Jones CJ, Frenneaux MP (2003) Wave intensity analysis from the common carotid artery: a new noninvasive index of cerebral vasomotor tone. Heart Vessels 18:202–206

    Article  PubMed  Google Scholar 

  51. Zambanini A, Cunningham SL, Parker KH, Khir AW, Mc GTSA, Hughes AD (2005) Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis. Am J Physiol 289:H270–H276

    CAS  Google Scholar 

  52. Parker KH, Jones CJ (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112:322–326

    Article  CAS  PubMed  Google Scholar 

  53. Saiki H, Kurishima C, Masutani S, Senzaki H (2014) Cerebral circulation in patients with Fontan circulation: assessment by carotid arterial wave intensity and stiffness. Ann Thorac Surg 97:1394–1399

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Saiki MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Saiki, H., Senzaki, H. (2015). Assessment of Vascular Function by Using Cardiac Catheterization. In: Senzaki, H., Yasukochi, S. (eds) Congenital Heart Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54355-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54355-8_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54354-1

  • Online ISBN: 978-4-431-54355-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics