Skip to main content

Assessment of Ventricular Function Using the Pressure-Volume Relationship

  • Chapter
  • First Online:
Congenital Heart Disease

Abstract

Pressure-volume relationships clearly demonstrate loading conditions (preload and afterload) and cardiac function (systolic and diastolic functions) as well as those relationships in a single plane. These advantages are greatly helpful to understanding the hemodynamics of patients with congenital heart disease, in which loading conditions as well as intrinsic heart functions may become greatly altered on medical, catheter, or surgical interventions. Stroke volume and end-systolic pressure (Pes) result from the balance between contractility and afterload, i.e., between end-systolic elastance (Ees) and effective arterial elastance (Ea) in a given preload. Ventricular-arterial coupling (Ees/Ea or Ea/Ees) is closely related to heart energy. The position and the slope of end-diastolic pressure-volume relation provide information about intrinsic myocardial stiffness, although it is also affected by factors outside the left ventricle (external constraint). While obtaining the actual pressure-volume loops requires invasive measurement, a noninvasive pressure-volume assessment is possible upon consideration of all clinical symptoms and history. This noninvasive approach also helps clinicians select an optimal therapy and assess the consequent changes based upon the evaluation of each factor and those interactions. Hence, the importance of understanding this “classic” concept remains unchanged for pediatric cardiologists managing the complicated hemodynamics of congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Little WC, Pu M (2009) Left ventricular-arterial coupling. J Am Soc Echocardiogr 22:1246–1248

    Article  PubMed  Google Scholar 

  2. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    CAS  PubMed  Google Scholar 

  3. Masutani S, Little WC, Hasegawa H, Cheng HJ, Cheng CP (2008) Restrictive left ventricular filling pattern does not result from increased left atrial pressure alone. Circulation 117:1550–1554

    Article  PubMed  Google Scholar 

  4. Sunagawa K, Maughan WL, Sagawa K (1985) Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56:586–595

    Article  CAS  PubMed  Google Scholar 

  5. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245:H773–H780

    CAS  PubMed  Google Scholar 

  6. Kelly RP, Ting CT, Yang TM et al (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:513–521

    Article  CAS  PubMed  Google Scholar 

  7. Little WC, Ohno M, Kitzman DW, Thomas JD, Cheng CP (1995) Determination of left ventricular chamber stiffness from the time for deceleration of early left ventricular filling. Circulation 92:1933–1939

    Article  CAS  PubMed  Google Scholar 

  8. Ohno M, Cheng CP, Little WC (1994) Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 89:2241–2250

    Article  CAS  PubMed  Google Scholar 

  9. Suga H (1994) Paul Dudley White International Lecture: cardiac performance as viewed through the pressure-volume window. Jpn Heart J 35:263–280

    Article  CAS  PubMed  Google Scholar 

  10. Masutani S, Cheng HJ, Hyttila-Hopponen M et al (2008) Orally available levosimendan: dose-related positive inotropic and lusitropic effect in conscious, chronically-instrumented normal and heart failure dogs. J Pharmacol Exp Ther 325:236–247

    Article  CAS  PubMed  Google Scholar 

  11. Senzaki H, Chen CH, Masutani S et al (2001) Assessment of cardiovascular dynamics by pressure-area relations in pediatric patients with congenital heart disease. J Thorac Cardiovasc Surg 122:535–547

    Article  CAS  PubMed  Google Scholar 

  12. Kass DA, Maughan WL (1988) From ‘Emax’ to pressure-volume relations: a broader view. Circulation 77:1203–1212

    Article  CAS  PubMed  Google Scholar 

  13. Lim DS, Gutgesell HP, Rocchini AP (2014) Left ventricular function by pressure-volume loop analysis before and after percutaneous repair of large atrial septal defects. J Interv Cardiol 27:204–211

    Article  CAS  PubMed  Google Scholar 

  14. Kass DA, Midei M, Graves W, Brinker JA, Maughan WL (1988) Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man. Cathet Cardiovasc Diagn 15:192–202

    Article  CAS  PubMed  Google Scholar 

  15. Senzaki H, Miyagawa K, Kishigami Y et al (2001) Inferior vena cava occlusion catheter for pediatric patients with heart disease: for more detailed cardiovascular assessments. Catheter Cardiovasc Interv 53:392–396

    Article  CAS  PubMed  Google Scholar 

  16. Kuehne T, Yilmaz S, Steendijk P et al (2004) Magnetic resonance imaging analysis of right ventricular pressure-volume loops: in vivo validation and clinical application in patients with pulmonary hypertension. Circulation 110:2010–2016

    Article  PubMed  Google Scholar 

  17. Pattynama PM, de Roos A, Van der Velde ET et al (1995) Magnetic resonance imaging analysis of left ventricular pressure-volume relations: validation with the conductance method at rest and during dobutamine stress. Magn Reson Med 34:728–737

    Article  CAS  PubMed  Google Scholar 

  18. Little WC (1985) The left ventricular dP/dt max-end-diastolic volume relation in closed-chest dogs. Circ Res 56:808–815

    Article  CAS  PubMed  Google Scholar 

  19. Little WC, Cheng CP, Mumma M, Igarashi Y, Vinten-Johansen J, Johnston WE (1989) Comparison of measures of left ventricular contractile performance derived from pressure-volume loops in conscious dogs. Circulation 80:1378–1387

    Article  CAS  PubMed  Google Scholar 

  20. Chen CH, Fetics B, Nevo E et al (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38:2028–2034

    Article  CAS  PubMed  Google Scholar 

  21. Senzaki H, Iwamoto Y, Ishido H et al (2008) Ventricular-vascular stiffening in patients with repaired coarctation of aorta: integrated pathophysiology of hypertension. Circulation 118:S191–S198

    Article  PubMed  Google Scholar 

  22. Nozawa T, Cheng CP, Noda T, Little WC (1994) Effect of exercise on left ventricular mechanical efficiency in conscious dogs. Circulation 90:3047–3054

    Article  CAS  PubMed  Google Scholar 

  23. Nozawa T, Yasumura Y, Futaki S, Tanaka N, Uenishi M, Suga H (1988) Efficiency of energy transfer from pressure-volume area to external mechanical work increases with contractile state and decreases with afterload in the left ventricle of the anesthetized closed-chest dog. Circulation 77:1116–1124

    Article  CAS  PubMed  Google Scholar 

  24. Little WC, Cheng CP (1991) Left ventricular-arterial coupling in conscious dogs. Am J Physiol 261:H70–H76

    CAS  PubMed  Google Scholar 

  25. Little WC, Cheng CP (1993) Effect of exercise on left ventricular-arterial coupling assessed in the pressure-volume plane. Am J Physiol 264:H1629–H1633

    CAS  PubMed  Google Scholar 

  26. Masutani S, Cheng HJ, Tachibana H, Little WC, Cheng CP (2011) Levosimendan restores the positive force-frequency relation in heart failure. Am J Physiol 301:H488–H496

    CAS  Google Scholar 

  27. Ohte N, Cheng CP, Little WC (2003) Tachycardia exacerbates abnormal left ventricular-arterial coupling in heart failure. Heart Vessels 18:136–141

    Article  PubMed  Google Scholar 

  28. Raff GL, Glantz SA (1981) Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circ Res 48:813–824

    Article  CAS  PubMed  Google Scholar 

  29. Matsubara H, Takaki M, Yasuhara S, Araki J, Suga H (1995) Logistic time constant of isovolumic relaxation pressure-time curve in the canine left ventricle. Better alternative to exponential time constant. Circulation 92:2318–2326

    Article  CAS  PubMed  Google Scholar 

  30. Senzaki H, Kass DA (2010) Analysis of isovolumic relaxation in failing hearts by monoexponential time constants overestimates lusitropic change and load-dependence: mechanisms and advantages of alternative logistic fit. Circ Heart Fail 3:268–276

    Article  PubMed  Google Scholar 

  31. Senzaki H, Fetics B, Chen CH, Kass DA (1999) Comparison of ventricular pressure relaxation assessments in human heart failure: quantitative influence on load and drug sensitivity analysis. J Am Coll Cardiol 34:1529–1536

    Article  CAS  PubMed  Google Scholar 

  32. Thomas JD, Weyman AE (1991) Echocardiographic doppler evaluation of left ventricular diastolic function. Physics and physiology. Circulation 84:977–990

    Article  CAS  PubMed  Google Scholar 

  33. Oh JK, Hatle L, Tajik AJ, Little WC (2006) Diastolic heart failure can be diagnosed by comprehensive two-dimensional and Doppler echocardiography. J Am Coll Cardiol 47:500–506

    Article  PubMed  Google Scholar 

  34. Pak PH, Maughan L, Baughman KL, Kass DA (1996) Marked discordance between dynamic and passive diastolic pressure-volume relations in idiopathic hypertrophic cardiomyopathy. Circulation 94:52–60

    Article  CAS  PubMed  Google Scholar 

  35. Senzaki H, Gluzband YA, Pak PH, Crow MT, Janicki JS, Kass DA (1998) Synergistic exacerbation of diastolic stiffness from short-term tachycardia-induced cardiodepression and angiotensin II. Circ Res 82:503–512

    Article  CAS  PubMed  Google Scholar 

  36. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959

    Article  CAS  PubMed  Google Scholar 

  37. Dauterman K, Pak PH, Maughan WL et al (1995) Contribution of external forces to left ventricular diastolic pressure. Implications for the clinical use of the Starling law. Ann Intern Med 122:737–742

    Article  CAS  PubMed  Google Scholar 

  38. Smiseth OA, Frais MA, Kingma I, Smith ER, Tyberg JV (1985) Assessment of pericardial constraint in dogs. Circulation 71:158–164

    Article  CAS  PubMed  Google Scholar 

  39. Nishimura RA, Tajik AJ (1997) Evaluation of diastolic filling of left ventricle in health and disease: doppler echocardiography is the clinician's Rosetta Stone. J Am Coll Cardiol 30:8–18

    Article  CAS  PubMed  Google Scholar 

  40. Maurer MS, Spevack D, Burkhoff D, Kronzon I (2004) Diastolic dysfunction: can it be diagnosed by Doppler echocardiography? J Am Coll Cardiol 44:1543–1549

    Article  PubMed  Google Scholar 

  41. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202

    Article  PubMed  Google Scholar 

  42. Masutani S, Senzaki H, Ishido H et al (2003) 2 Extremely low birth weight infants in afterload mismatch successfully treated by hand infusion. J Jpn Soc Premature Newborn Med 15:241–245, Japanese

    Google Scholar 

  43. Saiki H, Senzaki H (2011) Basic concepts of circulatory physiology in congenital heart disease: a view from pressure-volume relationship (articles in Japanese). Pediatr Cardiol Cardiac Surg 27:76–87

    Google Scholar 

  44. Masutani S, Saiki H, Kurishima C, Ishido H, Tamura M, Senzaki H (2013) Heart failure with preserved ejection fraction in children. Circ J 77:2375–2382

    Article  PubMed  Google Scholar 

  45. Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720

    Article  PubMed  Google Scholar 

  46. Khono K, Tamai A, Kobayashi T, Senzaki H (2011) Effects of stent implantation for peripheral pulmonary artery stenosis on pulmonary vascular hemodynamics and right ventricular function in a patient with repaired tetralogy of Fallot. Heart Vessels 26:672–676

    Article  PubMed  Google Scholar 

  47. Nogaki M, Senzaki H, Masutani S et al (2000) Ventricular energetics in Fontan circulation: evaluation with a theoretical model. Pediatr Int 42:651–657

    Article  CAS  PubMed  Google Scholar 

  48. Senzaki H, Masutani S, Ishido H et al (2006) Cardiac rest and reserve function in patients with Fontan circulation. J Am Coll Cardiol 47:2528–2535

    Article  PubMed  Google Scholar 

  49. Masutani S, Senzaki H (2011) Left ventricular function in adult patients with atrial septal defect: implication for development of heart failure after transcatheter closure. J Card Fail 17:957–963

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Masutani MD, PhD, FJCC, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Masutani, S., Senzaki, H. (2015). Assessment of Ventricular Function Using the Pressure-Volume Relationship. In: Senzaki, H., Yasukochi, S. (eds) Congenital Heart Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54355-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54355-8_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54354-1

  • Online ISBN: 978-4-431-54355-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics