Advances in Mathematical Economics Volume 17 pp 39-70

Part of the Advances in Mathematical Economics book series (MATHECON, volume 17) | Cite as

Discounted optimal growth in a two-sector RSS model: a further geometric investigation

Chapter

Abstract

The geometric apparatus of Khan–Mitra (Adv. Math. Econ. 8:349–381, 2006; Jpn. Econ. Rev. 58:191–225, 2007) enables an identification of a tripartite (inside-borderline-outside) distinction for discounted Ramseyian optimality in the 2-sector RSS model and to obtain the following results: (a) parametric ranges of the discount factor for which the check-map is the optimal policy function, (b) necessary and sufficient conditions for the existence of stable optimal 2-period cycles, (c) absence of 3-period cycles in the borderline case, and (d) existence of unstable 3-period cycles in a canonical instance of the outside case. The geometry is shown to have more general interest and relevance for future work.

Key words

3-period convergence 3-period cycles Attracting 2-period cycles McKenzie bifurcation Optimal policy correspondence RSS model Trapezium Trapping square Tripartite categorical distinction 

References

  1. 1.
    Cass, D., Stiglitz, J.E.: The implications of alternative savings and expectation hypotheses for choices of technique and patterns of growth. J. Polit. Econ. 77, 586–627 (1970)CrossRefGoogle Scholar
  2. 2.
    Fujio, M.: Optimal Transition Dynamics in the Leontief Two-sector Growth Model, Unpublished Ph.D. dissertation, The Johns Hopkins University (2006)Google Scholar
  3. 3.
    Khan M.A., Mitra, T.: On choice of technique in the Robinson-Solow-Srinivasan model. Int. J. Econ. Theor. 1, 83–110 (2005)CrossRefGoogle Scholar
  4. 4.
    Khan M.A., Mitra, T.: On topological chaos in the Robinson-Solow-Srinivasan model. Econ. Lett. 88, 127–133 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Khan M.A., Mitra, T.: Discounted optimal growth in the two-sector RSS model: a geometric investigation. Adv. Math. Econ. 8, 349–381 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Khan M.A., Mitra, T.: Undiscounted optimal growth under irreversible investment: a synthesis of the value-Loss approach and dynamic programing. Econ. Theor. 29, 341–362 (2006)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Khan M.A., Mitra, T.: Optimal Cyclicity and Chaos in the 2-Sector RSS Model: A Constructive Synthesis. Cornell University, Mimeo (2006)Google Scholar
  8. 8.
    Khan M.A., Mitra, T.: Optimal growth in a two-sector RSS model without discounting: a geometric investigation. Jpn. Econ. Rev. 58, 191–225 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khan M.A., Mitra, T.: Optimal growth under discounting in the two-sector Robinson-Solow-Srinivasan model: a dynamic programing approach. J. Differ. Equat. Appl. 13, 151–168 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Khan M.A., Mitra, T.: Complicated Dynamics and Parametric Restrictions in the Robinson-Solow-Srinivasan Model. Cornell University, Mimeo (2010)Google Scholar
  11. 11.
    McKenzie, L.W.: Optimal Economic Growth, Turnpike Theorems and Comparative Dynamics. In: Arrow, K.J., Intrilligator, M. (eds.) Handbook of Mathematical Economics, vol. 3, pp. 1281–1355. North-Holland, New York (1986)Google Scholar
  12. 12.
    Mitra, T.: Characterization of the Turnpike property of optimal paths in the aggregative model of intertemporal allocation. Int. J. Econ. Theor 1, 247–275 (2005)CrossRefGoogle Scholar
  13. 13.
    Radner, R.: Paths of economic growth that are optimal only with respect to final states. Rev. Econ. Stud. 28, 98–104 (1961)CrossRefGoogle Scholar
  14. 14.
    Stiglitz, J.E.: A note on technical choice under full employment in a socialist economy. Econ. J. 78, 603–609 (1968)CrossRefGoogle Scholar
  15. 15.
    Stiglitz, J.E.: The badly behaved economy with the well-behaved production function. In: Mirrlees, J.A., Stern, N.H. (eds.) Models of Economic Growth, Chap. 6. Wiley, New York (1973)Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Department of EconomicsThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of EconomicsCornell UniversityIthacaUSA

Personalised recommendations