Skip to main content

Wound Healing and Epithelial–Mesenchymal Transition in the Lens Epithelium: Roles of Growth Factors and Extracellular Matrix

  • Chapter
  • First Online:
Book cover Lens Epithelium and Posterior Capsular Opacification

Abstract

The process of tissue fibrosis is characterized by the appearance of myofibroblasts, the key cell type involved in the fibrogenic reaction, and by the excess and disorganized accumulation of extracellular matrix, with resultant tissue contraction and impaired tissue function. Local inflammation is involved in this process with the supply of profibrogenic factors. This is also the case in posterior capsular opacification (PCO). In PCO, tissue myofibroblasts are generated from lens epithelial cells, the only cell lineage in the crystalline lens, through epithelial–mesenchymal transition (EMT), a process through which an epithelial cell changes its phenotype to become more like a mesenchymal cell, with the exception of fibroblast-derived myofibroblasts. Transforming growth factor β (TGFβ) is one of the major growth factors/cytokines involved in the process of EMT, although various other factors expressed by injured tissues orchestrate the EMT process. Among TGFβ signaling cascades, Smad signaling is considered to play a critical role, although other classical mitogen-activated protein kinases also have important roles in modulating lens EMT. The lens epithelium also has the ability to form other types of PCO, regenerated lentoid structures of Soemmering’s rings and Elschnig’s pearls, both containing crystalline lens-like components. PCO tissue is also characterized by the accumulation of EMT-lens cell-derived matricellular components, i.e., tenascin C, osteopontin, and lumican, that further modulate Smad signaling and EMT of these cells. Fibroblast growth factor reportedly also plays an important role in lens tissue regeneration. PCO-related signal transduction cascades, such as Smad signaling, could be a putative target for the prevention or treatment of unfavorable PCO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  2. Kiwanuka E, Junker J, Eriksson E (2012) Harnessing growth factors to influence wound healing. Clin Plast Surg 39:239–248

    Article  PubMed  Google Scholar 

  3. Douglas HE (2010) TGF-ß in wound healing: a review. J Wound Care 19:403–406

    Article  CAS  PubMed  Google Scholar 

  4. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol 3:349–363

    Article  CAS  PubMed  Google Scholar 

  6. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    Article  CAS  PubMed  Google Scholar 

  7. Hinz B, Gabbiani G (2003) Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb Haemost 90:993–1002

    CAS  PubMed  Google Scholar 

  8. Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A (2012) The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5(Suppl 1):S5

    Google Scholar 

  9. Willis BC, duBois RM, Borok Z (2006) Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 3:377–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zeisberg M, Kalluri R (2004) The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 82:175–181

    Article  PubMed  Google Scholar 

  12. Quan TE, Cowper SE, Bucala R (2006) The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 8:145–150

    Article  CAS  PubMed  Google Scholar 

  13. de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW (2005) Transforming growth factor-β-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs 179:43–55

    Article  PubMed  Google Scholar 

  14. Martinez G, de Iongh RU (2010) The lens epithelium in ocular health and disease. Int J Biochem Cell Biol 42:1945–1963

    CAS  PubMed  Google Scholar 

  15. Ishida W, Mori Y, Lakos G, Sun L, Shan F, Bowes S, Josiah S, Lee WC, Singh J, Ling LE, Varga J (2006) Intracellular TGF-β receptor blockade abrogates Smad-dependent fibroblast activation in vitro and in vivo. J Invest Dermatol 126:1733–1744

    Article  CAS  PubMed  Google Scholar 

  16. Xiao H, Wei H, Yang GB, Peng HL, Zhang C (2011) Effects of paeoniflorin on expressions of CTGF, PDGF and TNF-α in mice with hepatic fibrosis due to Schistosoma japonicum infection. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 23:288–291

    CAS  PubMed  Google Scholar 

  17. Zavadil J, Böttinger EP (2005) TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24:5764–5774

    Article  CAS  PubMed  Google Scholar 

  18. Menko S, Philp N, Veneziale B, Walker J (1998) Integrins and development: how might these receptors regulate differentiation of the lens. Ann N Y Acad Sci 842:36–41

    Article  CAS  PubMed  Google Scholar 

  19. Paterson FL, Kazenwadel J, Bert AG, Khew-Goodall Y, Ruszkiewicz A, Goodall GJ (2013) Extracellular matrix remodeling and cellular differentiation. Neoplasia 15:180–191

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Saika S, Okada Y, Miyamoto T, Ohnishi Y, Ooshima A, McAvoy JW (2001) Smad translocation and growth suppression in lens epithelial cells by endogenous TGFβ2 during wound repair. Exp Eye Res 72:679–686

    Article  CAS  PubMed  Google Scholar 

  21. Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi I, Kapus A (2004) Integrity of cell-cell contacts is a critical regulator of TGF-β 1-induced epithelial-to-myofibroblast transition: role for β-catenin. Am J Pathol 165:1955–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Saika S (2004) Intraocular lens: biocompatibility related to lens epithelial cells. Prog Retinal Eye Res 23:283–305

    Article  CAS  Google Scholar 

  23. Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-β signaling in fibrosis. Growth Factor 29:196–202

    Article  CAS  Google Scholar 

  24. Massague J (2012) TGFβ signaling in context 13:616–630

    Google Scholar 

  25. Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res 347:11–20

    Article  CAS  PubMed  Google Scholar 

  26. Itoh S, Itoh F, Goumans MJ, Ten Dijke P (2000) Signaling of transforming growth factor-β family members through Smad proteins. Eur J Biochem 267:6954–6967

    Article  CAS  PubMed  Google Scholar 

  27. Jampel HD, Roche N, Stark WJ, Roberts AB (1990) Transforming growth factor-β in human aqueous humor. Curr Eye Res 9:963–969

    Article  CAS  PubMed  Google Scholar 

  28. Weinstein M, Yang X, Deng C (2000) Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 11:49–58

    Article  CAS  PubMed  Google Scholar 

  29. Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP, Roberts AB (2001) Functional characterization of transforming growth factor β signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 276:19945–19953

    Article  CAS  PubMed  Google Scholar 

  30. Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, Zheng W, Little PJ, Osman N (2013) Transforming growth factor-β signaling: role and consequences of Smad linker region phosphorylation. Cell Signal 25:2017–2024

    Article  CAS  PubMed  Google Scholar 

  31. Matsuzaki K (2011) Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis 32:1578–1588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Velden JL, Alcorn JF, Guala AS, Badura EC, Janssen-Heininger YM (2011) c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3. Am J Respir Cell Mol Biol 44:571–581

    Article  PubMed Central  PubMed  Google Scholar 

  33. Saika S, Ikeda K, Yamanaka O, Flanders KC, Ohnishi Y, Nakajima Y, Muragaki Y, Ooshima A (2006) Adenoviral gene transfer of BMP-7, Id2, or Id3 suppresses injury-induced epithelial-to-mesenchymal transition of lens epithelium in mice. Am J Physiol Cell Physiol 290:282–289

    Google Scholar 

  34. Tian X, Zhang J, Tan TK, Lyons JG, Zhao H, Niu B, Lee SR, Tsatralis T, Zhao Y, Wang Y, Cao Q, Wang C, Wang Y, Lee VW, Kahn M, Zheng G, Harris DC (2013) Association of β-catenin with P-Smad3 but not LEF-1 dissociates in vitro profibrotic from anti-inflammatory effects of TGF-β1. J Cell Sci 126:67–76

    Article  CAS  PubMed  Google Scholar 

  35. Zhang M, Wang M, Tan X, Li TF, Zhang YE, Chen D (2010) Smad3 prevents β-catenin degradation and facilitates β-catenin nuclear translocation in chondrocytes. J Biol Chem 285:8703–8710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Xu J, Lamouille S, Derynck R (2009) TGF-β-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  PubMed  Google Scholar 

  37. Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1:260–266

    CAS  PubMed  Google Scholar 

  38. Saika S, Kono-Saika S, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Flanders KC, Yoo J, Anzono M, Liu C-Y, Kao WW-Y, Roberts AB (2004) Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am J Pathol 164:651–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Banh A, Deschamps PA, Gauldie J, Overbeek PA, Sivak JG, West-Mays JA (2006) Lens-specific expression of TGF-β induces anterior subcapsular cataract formation in the absence of Smad3. Invest Ophthalmol Vis Sci 47:3450–3460

    Article  PubMed Central  PubMed  Google Scholar 

  40. Cho HJ, Yoo J (2007) Rho activation is required for transforming growth factor-β-induced epithelial-mesenchymal transition in lens epithelial cells. Cell Biol Int 31:1225–1230

    CAS  PubMed  Google Scholar 

  41. Cho HJ, Baek KE, Saika S, Jeong MJ, Yoo J (2007) Snail is required for transforming growth factor-β-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun 353:337–343

    Article  CAS  PubMed  Google Scholar 

  42. Walker JL, Wolff IM, Zhang L, Menko AS (2007) Activation of SRC kinases signals induction of posterior capsule opacification. Invest Ophthalmol Vis Sci 48:2214–2223

    Article  PubMed  Google Scholar 

  43. Ferrer I, Blanco R, Carmona M, Puig B, Dominguez I, Vinals F (2002) Active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates are differentially expressed following systemic administration of kainic acid to the adult rat. Acta Neuropathol 103:391–407

    Article  CAS  PubMed  Google Scholar 

  44. Saika S, Ikeda K, Yamanaka O, Miyamoto T, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Nakajima Y, Kao WW-Y, Flanders KC, Roberts AB (2005) Expression of Smad7 in mouse eyes accelerates healing of corneal tissue following exposure to alkali. Am J Pathol 166:1405–1418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M, Bottinger EP (2000) A mechanism of suppression of TGF-β/SMAD signaling by NF-κB/RelA. Genes Dev 14:187–197

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Weng H, Mertens PR, Gressner AM, Dooley S (2007) IFN-gamma abrogates profibrogenic TGF-β signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol 46:295–303

    Article  CAS  PubMed  Google Scholar 

  47. Ulloa L, Doody J, Massague J (1999) Inhibition of transforming growth factor-β/SMAD signaling by the interferon-γ/STAT pathway. Nature 397:710–713

    Article  CAS  PubMed  Google Scholar 

  48. Shin EH, Basson MA, Robinson ML, McAvoy JW, Lovicu FJ (2012) Sprouty is a negative regulator of transforming growth factor β-induced epithelial-to-mesenchymal transition and cataract. Mol Med 18:861–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zheng H, Kang Y (2014) Multilayer control of the EMT master regulators. Oncogene 33:1755–1763

    Article  CAS  PubMed  Google Scholar 

  50. Chong CC, Stump RJ, Lovicu FJ, McAvoy JW (2009) TGFbeta promotes Wnt expression during cataract development. Exp Eye Res 88:307–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bao XL, Song H, Chen Z, Tang X (2012) Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Mol Vis 18:1983–1990

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Wormstone IM (2002) Posterior capsule opacification: a cell biological perspective. Exp Eye Res 74:337–347

    Article  PubMed  Google Scholar 

  53. Streuli C (1999) Extracellular matrix remodeling and cellular differentiation. Curr Opin Cell Biol 11:634–640

    Article  CAS  PubMed  Google Scholar 

  54. Saika S, Sumioka T, Okada Y, Yamanaka O, Kitano A, Miyamoto T, Shirai K, Kokado H (2013) Wakayama symposium: modulation of wound healing response in the corneal stroma by osteopontin and tenascin-C. Ocul Surf 11:12–15

    Article  PubMed  Google Scholar 

  55. Saika S, Shirai K, Yamanaka O, Miyazaki K, Okada Y, Kitano A, Flanders KC, Kon S, Uede T, Kao WW-Y, Rittling S, Denhardt D (2007) Loss of osteopontin perturbs the epithelial-mesenchymal transition in an injured mouse lens epithelium. Lab Invest 87:130–138

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka S, Sumioka T, Fujita N, Kitano A, Okada Y, Yamanaka O, Flanders KC, Miyajima M, Saika S (2010) Suppression of injury-induced epithelial-mesenchymal transition in a mouse lens epithelium lacking tenascin-C. Mol Vis 16:1194–1205

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Saika S, Shiraishi A, Saika S, Liu C-Y, Funderburgh JL, Kao CW-C, Converse RL, Kao WW-Y (2000) Role of lumican in the corneal epithelium during wound healing. J Biol Chem 275:2607–2612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Saika S, Miyamoto T, Tanaka S, Tanaka T, Ishida I, Ohnishi Y, Ooshima A, Ishiwata T, Assano G, Chikama T-I, Shiraishi A, Liu C-Y, Kao CW-C, Kao WW-Y (2003) Response of lens epithelial cells to injury: role of lumican in epithelial-mesenchymal transition. Invest Ophthalmol Vis Sci 44:2094–2102

    Article  PubMed  Google Scholar 

  59. Taliana L, Evans MD, Ang S, McAvoy JW (2006) Vitronectin is present in epithelial cells of the intact lens and promotes epithelial mesenchymal transition in lens epithelial explants. Mol Vis 12:1233–1242

    CAS  PubMed  Google Scholar 

  60. Shintani Y, Maeda M, Chaika N, Johnson KR, Wheelock MJ (2008) Collagen I promotes EMT in lung cancer cells via TGF-β3 signaling. Am J Respir Cell Mol Biol 38:95–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Saika S, Kawashima Y, Miyamoto T, Okada Y, Tanaka S, Yamanaka O, Ohnishi Y, Ooshima A, Yamanaka A (1998) Immunolocalization of hyaluronan and CD44 in quiescent and proliferating human lens epithelial cells. J Cataract Refract Surg 24:1266–1270

    Article  CAS  PubMed  Google Scholar 

  62. Desai VD, Wang Y, Simirskii VN, Duncan MK (2010) CD44 expression is developmentally regulated in the mouse lens and increases in the lens epithelium after injury. Differentiation 79:111–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Dawes LJ, Sugiyama Y, Tanedo AS, Lovicu FJ, McAvoy JW (2013) Wnt-frizzled signaling is part of an FGF-induced cascade that promotes lens fiber differentiation. Invest Ophthalmol Vis Sci 54:1582–1590

    Article  CAS  PubMed  Google Scholar 

  64. Song X, Sato Y, Felemban A, Ito A, Hossain M, Ochiai H, Yamamoto T, Sekiguchi K, Tanaka H, Ohta K (2012) Equarin is involved as an FGF signaling modulator in chick lens differentiation. Dev Biol 368:109–117

    Article  CAS  PubMed  Google Scholar 

  65. Miyamoto T, Saika S, Okada Y, Ishida-Nishikawa I, Sumioka T, Fujita N, Ohnishi Y (2004) Topical exposure of mitomycin C reduces opacification of the residual anterior lens capsule and lenticular regeneration after vitrectomy and lensectomy in rabbits. Graefes Arch Clin Exp Ophthalmol 242:327–331

    Article  CAS  PubMed  Google Scholar 

  66. Saika S, Ikeda K, Yamanaka O, Sato M, Muragaki Y, Ohnishi Y, Ooshima A, Nakajima Y, Namikawa K, Kiyama H, Flanders KC, Roberts AB (2004) Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial-mesenchymal transition of lens epithelium in mice. Lab Invest 84:1245–1258

    Article  CAS  PubMed  Google Scholar 

  67. Xavier S, Piek E, Fujii M, Javelaud D, Mauviel A, Flanders KC, Samuni AM, Felici A, Reiss M, Yarkoni S, Sowers A, Mitchell JB, Roberts AB, Russo A (2004) Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-β signaling by halofuginone. J Biol Chem 279:15167–15176

    Article  CAS  PubMed  Google Scholar 

  68. Kitano A, Saika S, Yamanaka O, Ikeda K, Reinach PS, Nakajima Y, Okada Y, Shirai K, Ohnishi Y (2006) Effects of genipin on the behaviors of human subconjunctival fibroblasts in vitro. Ophthalmic Res 38:355–360

    Article  CAS  PubMed  Google Scholar 

  69. Kitano A, Saika S, Yamanaka O, Reinach PS, Ikeda K, Okada Y, Shirai K, Ohnishi Y (2006) Genipin suppression of fibrogenic behaviors of the α-TN4 lens epithelial cell line. J Cataract Refract Surg 32:1727–1735

    Article  PubMed  Google Scholar 

  70. Kitano A, Saika S, Yamanaka O, Ikeda K, Okada Y, Shirai K, Reinach PS (2007) Emodin suppression of ocular surface inflammatory reaction. Invest Ophthalmol Vis Sci 48:5013–5022

    Article  PubMed  Google Scholar 

  71. Saika S, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Sumioka T, Shirai K, Kitano A, Miyazaki K, Tanaka S, Ikeda K (2008) Epithelial-mesenchymal transition as a therapeutic target for prevention of ocular tissue fibrosis. Endocr Metab Immune Disord Drug Targets 8(1):69–76

    Article  CAS  PubMed  Google Scholar 

  72. Saika S (2005) J Jpn Soc Cataract Res 17:17–21 (in Japanese)

    Google Scholar 

  73. Saika S, Yamanaka O, Okada Y, Tanaka S, Miyamoto T, Sumioka T, Kitano A, Shirai K, Ikeda K (2009) TGF β in fibroproliferative diseases in the eye. Front Biosci (Schol Ed) 1:376–390

    Article  Google Scholar 

Download references

Acknowledgment

The authors express deep thanks to Dr. John W. McAvoy and Dr. Frank J Lovicu, Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia, for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuya Saika M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Shirai, K., Kitano-Izutani, A., Miyamoto, T., Tanaka, Si., Saika, S. (2014). Wound Healing and Epithelial–Mesenchymal Transition in the Lens Epithelium: Roles of Growth Factors and Extracellular Matrix. In: Saika, S., Werner, L., Lovicu, F. (eds) Lens Epithelium and Posterior Capsular Opacification. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54300-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54300-8_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54299-5

  • Online ISBN: 978-4-431-54300-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics