Skip to main content

Photocontrol of New Molecular Functions by the Isomerization of Azobenzene

  • Chapter
  • First Online:
New Frontiers in Photochromism
  • 1474 Accesses

Abstract

Azobenzene shows the reversible E–Z photoisomerization upon near ultraviolet (UV) and blue light irradiations. By utilizing changes in the molecular length and polarity of azobenzene in this isomerization, azobenzene has been applied as the molecular switching unit of various molecular functional materials. In this chapter some recent challenges on the photoswitching of new molecular functions using azobenzene derivatives were described. They include the molecular chirality and molecular machines. The feature of these molecular functions is that the control is not accomplished until fine tuning of inter- or intramolecular motions. The racemization of the planar chiral macrocycles 2 and 5 is photochemically and dynamically controlled for the first time by controlling intramolecular free rotation of an asymmetric rotor unit by photoisomerization of an azobenzene moiety in macrocycles. Under circular polarized lights it was possible to enrich one of the enantiomers of 5 as the results of different efficiency of the photoisomerization between racemizing Z isomer and the nonracemizing E enantiomers. It was also demonstrated that point chirality was dynamically introduced by the E–Z photoisomerization of one of the azobenzenes in the methane derivatives substituted with two identical azobenzenes. In the study of molecular machine the sliding motion of a motor protein, kinesin-microtubule, can be controlled by the photoisomerization of azobenzene unit introduced to a monomolecular layer underneath the kinesin or in the adenosine triphosphate (ATP) served as an energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shinkai S, Ogawa T, Nakaji T (1979) Photocontrolled extraction ability of azobenzene-­bridged azacrown ether. Tetrahedron Lett 20(47):4569–4572

    Article  Google Scholar 

  2. Ueno A, Yoshimura H, Saka R, Osa T (1979) Photocontrol of binding ability of capped cyclodextrin. J Am Chem Soc 101(10):2779–2780

    Article  CAS  Google Scholar 

  3. Tazuke S, Kurihara S, Ikeda T (1987) Amplified image recording in liquid crystal media by means of photochemically triggered phase transition. Chem Lett 16(5):911–914

    Article  Google Scholar 

  4. Sackmann E (1971) Photochemically induced reversible color changes in cholesteric liquid crystals. J Am Chem Soc 93(25):7088–7090

    Article  CAS  Google Scholar 

  5. Tamaoki N (2001) Cholesteric liquid crystals for color information technology. Adv Mater 13(15):1135–1147

    Article  CAS  Google Scholar 

  6. Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Ohseto F, Ueda K, Shinkai S (1994) Thermal and light control of the sol–gel phase transition in cholesterol-based organic gels. novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J Am Chem Soc 116(15):6664–6676

    Article  CAS  Google Scholar 

  7. Irie M, Hirano Y, Hashimoto S, Hayashi K (1981) Photoresponsive polymers. 2. Reversible solution viscosity change of polyamides having azobenzene residues in the main chain. Macromolecules 14(2):262–267

    Article  CAS  Google Scholar 

  8. Willner I, Rubin S, Riklin A (1991) Photoregulation of papain activity through anchoring photochromic azo groups to the enzyme backbone. J Am Chem Soc 113(9):3321–3325

    Article  CAS  Google Scholar 

  9. Asanuma H, Ito T, Yoshida T, Liang X, Komiyama M (1999) Photoregulation of the formation and dissociation of a DNA duplex by using the cistrans isomerization of azobenzene. Angew Chem Int Ed 38(16):2393–2395

    Article  CAS  Google Scholar 

  10. Suarez M, Schuster GB (1995) Photoresolution of an axially chiral bicyclo[3.3.0]octan-3-one: phototriggers for a liquid-crystal-based optical switch. J Am Chem Soc 117(25):6732–6738

    Article  CAS  Google Scholar 

  11. Huck NPM, Jager WF, deLange B, Feringa BL (1996) Dynamic control and amplification of molecular chirality by circular polarized light. Science 273(5282):1686–1688

    Article  CAS  Google Scholar 

  12. Feringa BL, van Delden RA, Koumura N, Geertsema EM (2000) Chiroptical molecular switches. Chem Rev 100(5):1789–1816

    Google Scholar 

  13. Feringa BL (ed) (2001) Molecular switches. Wiley, Weinheim

    Google Scholar 

  14. Everitt SRL, Inoue Y (1999) Asymmetric photochemical reactions in solution. In: Ramamurthy V, Schanze KS (eds) Organic molecular photochemistry. Marcel Dekker, New York

    Google Scholar 

  15. Kuhn W, Braun E (1929) Photochemische Erzeugung optisch aktiver Stoffe. Naturwissenschaften 17(14):227–228

    Article  Google Scholar 

  16. Bonner WA, Rubenstein E (1987) Supernovae, neutron stars and biomolecular chirality. Biosystems 20(1):99–111

    Article  CAS  Google Scholar 

  17. Feringa BL, van Delden RA (1999) Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed 38(23):3418–3438

    Article  Google Scholar 

  18. Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (2000) From parity to chirality: chemical implications revisited. Tetrahedron Asymmetry 11(14):2845–2874

    Article  CAS  Google Scholar 

  19. Kawasaki T, Sato M, Ishiguro S, Saito T, Morishita Y, Sato I, Nishino H, Inoue Y, Soai K (2005) Enantioselective synthesis of near enantiopure compound by asymmetric autocatalysis triggered by asymmetric photolysis with circularly polarized light. J Am Chem Soc 127(10):3274–3275

    Article  CAS  Google Scholar 

  20. Mathews M, Tamaoki N (2008) Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals. J Am Chem Soc 130(34):11409–11416

    Article  CAS  Google Scholar 

  21. Basheer MC, Oka Y, Mathews M, Tamaoki N (2010) A light-controlled molecular brake with complete ON–OFF rotation. Chem Eur J 16(11):3489–3496

    Article  CAS  Google Scholar 

  22. Hashim PK, Thomas R, Tamaoki N (2011) Induction of molecular chirality by circularly polarized light in cyclic azobenzene with a photoswitchable benzene rotor. Chem Eur J 17:7304–7312

    Article  CAS  Google Scholar 

  23. Tamaoki N, Wada M (2006) Dynamic control of racemization rate through E−Z photoisomerization of azobenzene and subsequent partial photoresolution under circular polarized light. J Am Chem Soc 128(19):6284–6285

    Article  CAS  Google Scholar 

  24. Hashim PK, Tamaoki N (2011) Induction of point chirality by E/Z photoisomerization. Angew Chem Int Ed 50(49):11729–11730

    Article  CAS  Google Scholar 

  25. Hashim PK, Basheer MC, Tamaoki N (2013) Chirality induction by E−Z photoisomerization in [2.2] paracyclophane-bridged azobenzene dimer. Tetrahedron Lett 54(2):176–178

    Google Scholar 

  26. Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    Article  CAS  Google Scholar 

  27. Vale RD, Reese ST, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42(1):39–50

    Article  CAS  Google Scholar 

  28. Agarwal A, Hess H (2010) Biomolecular motors at the intersection of nanotechnology and polymer science. Prog Polym Sci 35(1–2):252–277

    Article  CAS  Google Scholar 

  29. Goel A, Vogel V (2008) Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nature Nanotech 3:465–475

    Article  CAS  Google Scholar 

  30. van den Heuvel MGL, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336

    Article  Google Scholar 

  31. Fischer T, Hess H (2007) Materials chemistry challenges in the design of hybrid bionanodevices: supporting protein function within artificial environments. J Mater Chem 17:943–951

    Article  CAS  Google Scholar 

  32. Stracke R, Böhm KJ, Wollweber L, Tuszynski JA, Unger E (2002) Analysis of the migration behaviour of single microtubules in electric fields. Biochem Biophys Res Commun 293(1):602–609

    Article  CAS  Google Scholar 

  33. Tucker R, Katira P, Hess H (2008) Herding nanotransporters: localized activation via release and sequestration of control molecules. Nano Lett 8(1):221–226

    Article  CAS  Google Scholar 

  34. Higuchi H, Muto E, Inoue Y, Yanagida T (1997) Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc Natl Acad Sci USA 94(9):4395–4400

    Article  CAS  Google Scholar 

  35. Hess H, Clemmens J, Qin D, Howard J, Vogel V (2001) Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett 1(5):235–239

    Article  CAS  Google Scholar 

  36. Nomura A, Uyeda TQP, Yumoto N, Tatsu Y (2006) Photo-control of kinesin-microtubule motility using caged peptides derived from the kinesin C-terminus domain. Chem Commun 2006:3588–3590

    Article  Google Scholar 

  37. Rahim MKA, Fukaminato T, Kamei T, Tamaoki N (2011) Dynamic photocontrol of the ­gliding motility of a microtubule driven by kinesin on a photoisomerizable monolayer surface. Langmuir 27(17):10347–10350

    Article  CAS  Google Scholar 

  38. Rahim MKA, Kamei T, Tamaoki N (2012) Dynamic photo-control of kinesin on a photoisomerizable monolayer—hydrolysis rate of ATP and motility of microtubules depending on the terminal group. Org Biol Chem 10:3321–3331

    Article  Google Scholar 

  39. Kamei T, Fukaminato T, Tamaoki N (2012) A photochromic ATP analogue driving a motor protein with reversible light-controlled motility: controlling velocity and binding manner of a kinesin–microtubule system in an in vitro motility assay. Chem Commun 48:7625–7627

    Article  CAS  Google Scholar 

  40. Ballardini R, Balzani V, Credi A, Gandolfi MT, Venturi M (2001) Artificial molecular-level machines: which energy to make them work? Acc Chem Res 34(6):445–455

    Article  CAS  Google Scholar 

  41. Balzani V, Gomez-Lopez M, Stoddart JF (1998) Molecular machines. Acc Chem Res 31(7):405–414

    Article  CAS  Google Scholar 

  42. Balzani V, Credi A, Venturi M (2007) Molecular devices and machines. Nano Today 2(2):18–25

    Article  Google Scholar 

  43. Pease AR, Jeppesen JO, Stoddart JF, Luo Y, Collier CP, Heath JR (2001) Switching devices based on interlocked molecules. Acc Chem Res 34(6):433–444

    Article  CAS  Google Scholar 

  44. Keaveney CM, Leigh DA (2004) Shuttling through anion recognition. Angew Chem Int Ed 43(10):1222–1224

    Article  CAS  Google Scholar 

  45. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105(4):1281–1376

    Article  CAS  Google Scholar 

  46. Frantz DK, Linden A, Baldridge KK, Siegel JS (2012) Molecular spur gears comprising triptycene rotators and bibenzimidazole-based stators. J Am Chem Soc 134(3):1528–1535

    Article  CAS  Google Scholar 

  47. Lubbe AS, Ruangsupapichat N, Caroli G, Feringa BL (2011) Control of rotor function in light-driven molecular motors. J Org Chem 76(21):8599–8610

    Article  CAS  Google Scholar 

  48. Dawson RE, Lincoln SF, Easton CJ (2008) The foundation of a light driven molecular muscle based on stilbene and α-cyclodextrin. Chem Commun 2008:3980–3982

    Article  Google Scholar 

  49. Juluri BK, Kumar AS, Liu Y, Ye T, Yang Y-W, Flood AH, Fang L, Stoddart JF, Weiss PS, Huang TJ (2009) A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3(2):291–300

    Article  CAS  Google Scholar 

  50. Chuang C-J, Li W-S, Lai C-C, Liu YH, Peng S-M, Chao I, Chiu S-H (2009) A molecular cage-based [2]rotaxane that behaves as a molecular muscle. Org Lett 11(2):385–388

    Article  CAS  Google Scholar 

  51. Badjic JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) A molecular elevator. Science 303:1845–1849

    Article  CAS  Google Scholar 

  52. Kelly TR, De Silva H, Silva RA (1999) Unidirectional rotary motion in a molecular system. Nature 401:150–152

    Article  CAS  Google Scholar 

  53. Kelly TR, Cai X, Damkaci F, Panicker S, Tu B, Bushell SM, Cornella I, Piggott MJ, Salives R, Cavero M, Zhao Y, Jasmin S (2007) Progress toward a rationally designed, chemically powered rotary molecular motor. J Am Chem Soc 129(2):376–386

    Article  CAS  Google Scholar 

  54. Vicario J, Walko M, Meetsma A, Feringa BL (2006) Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J Am Chem Soc 128(15):5127–5135

    Article  CAS  Google Scholar 

  55. Vicario J, Walko M, Meetsma A, Feringa BL (2005) Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification. Chem Commun 2005:5910–5912

    Article  Google Scholar 

  56. Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Bl F (1999) Light-driven monodirectional molecular rotor. Nature 401:152–155

    Article  CAS  Google Scholar 

  57. Tierney HL, Murphy CJ, Jewell AD, Baber AE, Iski EV, Khodaverdian HY, McGuire AF, Klebanov N, Sykes ECH (2011) Experimental demonstration of a single-molecule electric motor. Nature Nanotech 6:625–629

    Article  CAS  Google Scholar 

  58. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nature Rev 6:201–214

    Article  CAS  Google Scholar 

  59. Dennis JR, Howard J, Vogel V (1999) Molecular shuttles: directed motion of microtubules along nanoscale kinesin tracks. Nanotechnology 10:232–236

    Article  CAS  Google Scholar 

  60. Ichimura K, Oh S-K, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288(5471):1624–1626

    Article  CAS  Google Scholar 

  61. Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87(1):015501-1–015501-4

    Google Scholar 

  62. Warner M, Terentjev EM (2003) Liquid crystal elastomers. Oxford University Press, Oxford

    Google Scholar 

  63. Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem 120(27):5064–5066; Angew Chem Int Ed 47(27):4986–4988

    Google Scholar 

  64. Yoshino T, Kondo M, Mamiya J, Kinoshita M, Yu Y, Ikeda T (2010) Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv Mater 22(12):1361–1363

    Article  CAS  Google Scholar 

  65. Seki T, Nagano S, Kawashima Y, Zettsu N, Ubukata T (2005) Light-driven organized layer materials. Mol Cryst Liq Cryst 430(1):107–114

    Article  CAS  Google Scholar 

  66. Irie M, Kobatake S, Horichi M (2001) Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291(5509):1769–1772

    Article  CAS  Google Scholar 

  67. Morimoto M, Irie M (2010) A diarylethene cocrystal that converts light into mechanical work. J Am Chem Soc 132(40):14172–14178

    Article  CAS  Google Scholar 

  68. Eelkema R, Pollard MM, Vicario J, Katsonis N, Ramon BS, Bastiaansen CWM, Broer DJ, Feringa BL (2006) Molecular machines: nanomotor rotates microscale objects. Nature 440:163

    Article  CAS  Google Scholar 

  69. Eelkema R, Pollard MM, Katsonis N, Vicario J, Broer DJ, Feringa BL (2006) Rotational reorganization of doped cholesteric liquid crystalline films. J Am Chem Soc 128(44):14397–14407

    Article  CAS  Google Scholar 

  70. Bosco A, Jongejan MGM, Eelkema R, Katsonis N, Lacaze E, Ferrarini A, Feringa BL (2008) Photoinduced reorganization of motor-doped chiral liquid crystals: bridging molecular isomerization and texture rotation. J Am Chem Soc 130(44):14615–14624

    Google Scholar 

  71. Kausar A, Nagano H, Kuwahara Y, Ogata T, Kurihara S (2011) Photocontrolled manipulation of a microscale object: a rotational or translational mechanism. Chem Eur J 17(2):508–515

    Google Scholar 

  72. Lin T-H, Chen Y-J, Wu C-H, Fuh AY-G, Liu J-H, Yang P-C (2005) Cholesteric liquid crystal laser with wide tuning capability. Appl Phys Lett 86(12):161120

    Google Scholar 

  73. Shibaev P, Chiappetta SD, Milner V, Genack A, Bobrovsky A (2005) Light controllable tuning and switching of lasing in chiral liquid crystals. Opt Exp 13(7):2358–2363

    Article  CAS  Google Scholar 

  74. van Delden RA, van Gelder MB, Huck NPM, Feriga BL (2003) Controlling the color of cholesteric liquid-crystalline films by photoirradiation of a chiroptical molecular switch used as dopant. Adv Funct Mater 13(4):319–324

    Google Scholar 

  75. Ma J, Li Y, White T, Urbas A, Li Q (2010) Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning. Chem Commun 46:3463–3465

    Article  CAS  Google Scholar 

  76. Li Q, Li Y, Ma J, Yang D-K, White TJ, Bunning TJ (2011) Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure. Adv Mater 23(43):5069–5073

    Article  CAS  Google Scholar 

  77. Li Q, Green L, Venkataraman N, Shiyanovskaya I, Khan A, Urbas A, Doane JW (2007) Reversible photoswitchable axially chiral dopants with high helical twisting power. J Am Chem Soc 129(43):12908–12909

    Article  CAS  Google Scholar 

  78. Lee H-K, Doi K, Harada H, Tsutsumi O, Kanazawa A, Shiono T, Ikeda T (2000) Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore. J Phys Chem B 104(30):7023–7028

    Article  CAS  Google Scholar 

  79. Green L, Li Y, White T, Urbas A, Bunning T, Li Q (2009) Light-driven molecular switches with tetrahedral and axial chirality. Org Biomol Chem 7:3930–3933

    Article  CAS  Google Scholar 

  80. Mathews M, Zola RS, Hurley S, Yang D-K, White TJ, Bunning TJ, Li Q (2010) Light-driven reversible handedness inversion in self-organized helical superstructures. J Am Chem Soc 132(51):18361–18366

    Article  CAS  Google Scholar 

  81. Ruslim C, Ichimura K (2001) Conformation-assisted amplification of chirality transfer of chiral Z-azobenzenes. Adv Mater 13(1):37–40

    Article  CAS  Google Scholar 

  82. Pieraccini S, Masiero S, Spada GP, Gottarelli G (2003) A new axially-chiral photochemical switch. Chem Commun 2003:598–599

    Article  Google Scholar 

  83. Pieraccini S, Gottarelli G, Labruto R, Masiero S, Pandolini OS, Spada GP (2004) The control of the cholesteric pitch by some azo photochemical chiral switches. Chem Eur J 10(22):5632–5639

    Article  CAS  Google Scholar 

  84. Yoshioka T, Ogata T, Nonaka T, Moritsugu M, Kim SN, Kurihara S (2005) Reversible-­photon-mode full-color display by means of photochemical modulation of a helically cholesteric structure. Adv Mater 17(10):1226–1229

    Article  CAS  Google Scholar 

  85. Kawamoto M, Aoki T, Wada T (2007) Light-driven twisting behaviour of chiral cyclic compounds. Chem Commun 2007:930–932

    Article  Google Scholar 

  86. Wang Y, Urbas A, Li Q (2012) Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches. J Am Chem Soc 134(7):3342–3345

    Article  CAS  Google Scholar 

  87. Janicki SZ, Schuster GB (1995) A liquid crystal opto-optical switch: nondestructive information retrieval based on a photochromic fulgide as trigger. J Am Chem Soc 117(33):8524–8527

    Article  CAS  Google Scholar 

  88. Yokoyama Y, Sagisaka T (1997) Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromic fulgide derivatives. Chem Lett 26(8):687–688

    Article  Google Scholar 

  89. Denekamp C, Feringa BL (1998) Optically active diarylethenes for multimode photoswitching between liquid-crystalline phases. Adv Mater 10(14):1080–1082

    Article  CAS  Google Scholar 

  90. Yamaguchi T, Inagawa T, Nakazumi H, Irie S, Irie M (2000) Photoswitching of helical twisting power of a chiral diarylethene dopant: pitch change in a chiral nematic liquid crystal. Chem Mater 12(4):869–871

    Article  CAS  Google Scholar 

  91. Yamaguchi T, Inagawa T, Nakazumi H, Irie S, Irie M (2001) Photoinduced pitch changes in chiral nematic liquid crystals formed by doping with chiral diarylethene. J Mater Chem 11:2453–2458

    Article  CAS  Google Scholar 

  92. van Leeuwen T, Pijper TC, Areephong J, Feringa BL, Browne WR, Katsonis N (2011) Reversible photochemical control of cholesteric liquid crystals with a diamine-based diarylethene chiroptical switch. J Mater Chem 21:3142–3146

    Article  Google Scholar 

  93. Rameshbabu K, Urbas A, Li Q (2011) Synthesis and characterization of thermally irreversible photochromic cholesteric liquid crystals. J Phys Chem B 115(13):3409–3415

    Article  CAS  Google Scholar 

  94. Bossi ML, Murgida DH, Aramendia PF (2006) Photoisomerization of azobenzenes and spirocompounds in nematic and in twisted nematic liquid crystals. J Phys Chem B 110(28):13804–13811

    Article  CAS  Google Scholar 

  95. Jin L-M, Li Y, Ma J, Li Q (2010) Synthesis of novel thermally reversible photochromic axially chiral spirooxazines. Org Lett 12(15):3552–3555

    Article  CAS  Google Scholar 

  96. Pieraccini S, Masiero S, Ferrarini A, Spada GP (2011) Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications. Chem Soc Rev 40:258–271

    Article  CAS  Google Scholar 

  97. Davis R, Mallia VA, Das S, Tamaok N (2004) Butadienes as novel photochromes for color tuning of cholesteric glasses: influence of microscopic molecular reorganization within the helical superstructure. Adv Funct Mater 14(8):743–748

    Article  CAS  Google Scholar 

  98. Earl EJ, Wilson MR (2003) Predictions of molecular chirality and helical twisting powers: a theoretical study. J Chem Phys 119(19):10280–10288

    Article  CAS  Google Scholar 

  99. di Matteo A, Todd SM, Gottarelli G, Solladie G, Williams VE, Lemieux RP, Ferrarini A, Spada GP (2001) Correlation between molecular structure and helicity of induced chiral nematics in terms of short-range and electrostatic−induction interactions. The case of chiral biphenyls. J Am Chem Soc 123(32):7842–7851

    Article  Google Scholar 

  100. Gottarelli G, Hibert M, Samori B, Solladie G, Spada GP, Zimmermann R (1983) Induction of the cholesteric mesophase in nematic liquid crystals: mechanism and application to the determination of bridged biaryl configurations. J Am Chem Soc 105(25):7318–7321

    Article  CAS  Google Scholar 

  101. Thomas R, Yoshida Y, Akasaka T, Tamaoki N (2012) Influence of a change in helical twisting power of photoresponsive chiral dopants on rotational manipulation of micro-objects on the surface of chiral nematic liquid crystalline films. Chem Eur J 18(39):12337–12348

    Article  CAS  Google Scholar 

  102. Tamaoki N, Akasaka T, Thomas R (to be published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Tamaoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Tamaoki, N. (2013). Photocontrol of New Molecular Functions by the Isomerization of Azobenzene. In: Irie, M., Yokoyama, Y., Seki, T. (eds) New Frontiers in Photochromism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54291-9_14

Download citation

Publish with us

Policies and ethics