Skip to main content

Modeling and Control of Wheeled Mobile Robots: From Kinematics to Dynamics with Slipping and Skidding

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 65))

Abstract

This chapter addresses a trajectory tracking control problem of wheeled mobile robots (WMRs) in the style of tutorial, especially focusing on the relationship between modeling and control. The aim of this chapter is to reveal the steam of control of WMRs in the literature to help the development of robust controllers in the presence of slipping and skidding. It is shown that even if the robots are not under nonholonomic constraints, the control strategy for nonholonomic systems is useful for kinematic level controllers. Furthermore, it is emphasized that the backstepping method is attractive to utilize the kinematics-based controller for dynamic models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Milman RS, Susmann HJ (eds) Differential geometric control theory. Birkhäuser, Boston, pp 181–191

    Google Scholar 

  2. Kolmanovsky J, McClamroch NH (1995) Developments in nonholonomic control systems. IEEE Control Syst Mag 15(6):20–36

    Article  Google Scholar 

  3. Morin P, Samson C (2002) Feedback control of nonholonomic wheeled vehicles: a survey. Arch Control Sci 12(48):7–36

    MathSciNet  MATH  Google Scholar 

  4. Kanayamaa Y, Kimura Y, Miyazaki F Noguchi T (1990) Astable tracking control method for an autonomous mobile robot. In: Proceedings of 1990 international conference on robotics and automation, Melbourne, pp 384–389

    Google Scholar 

  5. Samson C (1995) Control of chained systems application to path following and time-varying point-stabilization of mobile robots. IEEE Trans Autom Control 40(1):125–151

    Article  MathSciNet  Google Scholar 

  6. Bloch AM, Reyhanoglu M, McClamroch NH (1992) Control and stabilization of nonholonomic dynamic systems. IEEE Trans Autom Control 37(11):1746–1757

    Article  MathSciNet  MATH  Google Scholar 

  7. Canudas deWit C, Sørdalen OJ (1992) Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans Autom Control 37(11):1791–1797

    Article  Google Scholar 

  8. Murray RM, Sastry S (1993) Nonholonomic motion planning: steering using sinusoids. IEEE Trans Autom Control 38(5):700–716

    Article  MathSciNet  MATH  Google Scholar 

  9. De Luca A, Oriolo G (1995) Modeling and control of nonholonomic mechanical systems. In: Angeles J, Kecskeméthy A (eds) Kinematics and dynamics of multi-body systems, vol 360, CISM Lecture Notes. Springer, Wien, pp 277–342

    Google Scholar 

  10. Andréa Novel B, Campion G, Bastin G (1995) Control of nonholonomic wheeled mobile robots by state feedback linearization. Int J Robot Res 14:543–559

    Article  Google Scholar 

  11. Astolfi A (1996) Discontinuous control of nonholonomic systems. Syst Control Lett 27:37–45

    Article  MathSciNet  MATH  Google Scholar 

  12. Campion G, Bastin G, D’Andrea-Novel B (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robot Autom 12(1):47–62

    Article  Google Scholar 

  13. Jiang ZP, Nijmeijer H (1997) Tracking control of mobile robots: a case study in backstepping. Automatica 33(7):1393–1399

    Article  MathSciNet  MATH  Google Scholar 

  14. Fierro R, Lewis F (1997) Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. J Robot Syst 14(3):149–163

    Article  MATH  Google Scholar 

  15. Jiang ZP, Nijmeijer H (1999) A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Trans Autom Control 44(2):265–279

    Article  MathSciNet  MATH  Google Scholar 

  16. Fukao T, Nakagawa H, Adachi N (2000) Robust adaptive control of a nonholonomic mobile robot. IEEE Trans Robot Autom 16(5):609–615

    Article  Google Scholar 

  17. Kozłowski K, Majchrzak J (2002) A new control algorithm for a nonholonomic mobile robot. Arch Control Sci 12(48):37–69

    MathSciNet  MATH  Google Scholar 

  18. Morin P, Samson C (2003) Practical stabilization of driftless systems on Lie groups: the transverse function approach. IEEE Trans Autom Control 48(9):1496–1508

    Article  MathSciNet  Google Scholar 

  19. Morin P, Samson C (2004) Trajectory tracking for nonholonomic vehicles: overview and case study. In: Kozlowski K (ed) 4th international workshop on robot motion control, pp 139–153

    Google Scholar 

  20. Morin P, Samson C (2009) Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans on Robot 25(5):1058–1073

    Article  MathSciNet  Google Scholar 

  21. Chwa D (2004) Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans Control Syst Technol 12(4):637–644

    Article  MathSciNet  Google Scholar 

  22. Park BS, Yoo SJ, Park JB, Choi YH (2009) Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans Control Syst Technol 17(1):207–214

    Article  Google Scholar 

  23. Park BS, Yoo SJ, Park JB, Choi YH (2010) A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic wheeled mobile robots. IEEE Trans Control Syst Technol 18(5):1199–1206

    Article  Google Scholar 

  24. Michalek M, Kozlowski K (2010) Vector-field-orientation feedback control method for a differentially driven vehicle. IEEE Trans Control Syst Technol 18(1):45–65

    Article  Google Scholar 

  25. Balakrishna R, Ghosal A (1995) Modeling of slip for wheeled mobile robots. IEEE Trans Robot Autom 11(1):126–132

    Article  Google Scholar 

  26. Andréa Novel B, Campion G, Bastin G (1995) Control of wheeled mobile robots not satisfying ideal velocity constraints; a singular perturbation approach. Int J Robust Nonlinear Control 5(5):243–267

    Article  MATH  Google Scholar 

  27. Leroquais W, Andréa Novel B (1996) Modeling and control of wheeled mobile robots not satisfying ideal velocity constraints: the unicycle case. In: Proceedings of 35th IEEE conference on decision and control, vol 2, December 1996, Kobe, pp 1437–1442

    Google Scholar 

  28. Corradini ML, Leo T, Orlando G (1999) Robust stabilization of a mobile robot violating the nonholonomic constraint via quasi-sliding modes. In: Proceedings of the IEEE international American control conference, Amsterdam, vol 6, pp 3935–3939

    Google Scholar 

  29. Caracciolo L, De Luca A, Iannitti S (1999) Trajectory tracking control of a four-wheel differentially driven mobile Robot. In: IEEE international conference on robotics and automation, Detroit, pp 2632–2638

    Google Scholar 

  30. Boutayeb M, Aubry D (1999) A strong tracking extended Kalman observer for nonlinear discrete-time systems. IEEE Trans Autom Control 44(8):1550–1556

    Article  MathSciNet  MATH  Google Scholar 

  31. Motte I, Campion G (2000) A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints. IEEE Trans Robot Autom 16(6):875–880

    Article  Google Scholar 

  32. Dixon WE, Dawson DM, Zergeroglu E, Behal A (2001) Nonlinear control of wheeled mobile robots. Springer, London

    MATH  Google Scholar 

  33. Corradini ML, Leo T, Orlando G (2002) Experimental testing of a discrete-time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects. Int J Robot Syst 19:177–188

    Article  Google Scholar 

  34. Kozlowski K, Pazderski D (2004) Modeling and control of a 4-wheel skid-steering mobile robot. Int J Appl Math Comput Sci 14(4):477–496

    MathSciNet  MATH  Google Scholar 

  35. Mandow A, Martínez JL, Morales J, Blanco JL, García-Cerezo A, González J (2007) Experimental kinematics for wheeled skid-steer mobile robots. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, San Diego, pp 1222–1227

    Google Scholar 

  36. Yi J, Song D, Zhang J, Goodwin Z (2007) Adaptive trajectory tracking control of skid-steered mobile robots. In: Proceedings of the IEEE international conference on robotics and automation, Roma, pp 2605–2610

    Google Scholar 

  37. Wang D, Low CB (2008) Modeling and analysis of skidding and slipping in wheeled mobile robots: control design perspective. IEEE Trans Robot 24(3):676–687

    Article  Google Scholar 

  38. Michalek M, Dutkiewicz P, Kielczewski M, Pazderski D (2009) Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control. Int J Appl Math Comput Sci 19(4):547–559

    MathSciNet  Google Scholar 

  39. Yi J, Wang H, Zhang J, Song D, Jayasuria S, Liu J (2009) Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation. IEEE Trans Robot 25(5):1087–1097

    Article  Google Scholar 

  40. Wang H, Zhang J, Yi J, Song D, Jayasuriya S, Liu J (2009) Modeling and motion stability analysis of skid-steered mobile robots. In: Proceedings of IEEE international conference on robotics and automation, Kobe, pp 4112–4117

    Google Scholar 

  41. Yu W, Chuy OY Jr, Collins EG Jr, Hollis P (2010) Analysis and experimental verification for dynamic modeling of a skid-steered wheeled vehicle. IEEE Trans Robot 26(2):340–353

    Article  Google Scholar 

  42. Krstic M, Kanellakopoulos I, Kokotovic P (1995) Nonlinear and adaptive control design. Wiley, New York

    Google Scholar 

  43. Swaroop D, Hedrick JK, Yip PP, Gerdes JC (2000) Dynamic surface control for a class of nonlinear systems. IEEE Trans Autom Control 45(10):1893–1899

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang Z, Miyazaki K, Kanae S, Wada K (2004) Robust position control of a magnetic levitation system via dynamic surface control technique. IEEE Trans Ind Electron 51(1):26–34

    Article  Google Scholar 

  45. Chenliang W, Yan L (2010) Adaptive dynamic surface control for linear multivariable systems. Automatica 46:1703–1711

    Article  MathSciNet  MATH  Google Scholar 

  46. Han IS, Lee MJ (2012) Adaptive dynamic surface control with sliding mode control and RWNN for robust positioning of a linear motion stage. Mechatronics 22:222–238

    Article  Google Scholar 

  47. Ogawa N, Yokoyama M, Tanabe Y (2012) Control via back-stepping and DSC approach for a two-wheeled robot with slipping and skidding. In: Proceedings of ASME DSCC/MOVIC, Fort Lauderdale

    Google Scholar 

  48. Fujimoto K, Yokoyama M, Tanabe Y (2011) I&I adaptive control via dynamic surface control approach for a four-rotor mini helicopter. In: Proceedings of ICIUS2011, Chiba

    Google Scholar 

  49. Fujimoto K, Yokoyama M (2012) I&I Adaptive control by DSC approach for parametric strict-feedback systems. In: Proceedings of ASME DSCC/MOVIC 2012, Fort Lauderdale

    Google Scholar 

  50. Wong JY (2001) Theory of ground vehicles, 3rd edn. Wiley, New York

    Google Scholar 

  51. Pacejka HB (2002) Tire and vehicle dynamics. Butterworth-Heinemann, Oxford

    Google Scholar 

  52. Tobe T, Yokoyama M (2012) Position tracking control of a skid-steering vehicle robot. In: Proceedings of ICIUS2012, Singapore

    Google Scholar 

  53. Khalil HK (2001) Nonlinear systems, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  54. Song Z, Zweiri YH, Seneviratne LD, Althoefer K (2006) Nonlinear observer for slip estimation of skid-steering vehicles. In: Proceedings IEEE international conference on robotics and automation, Orlando, pp 1499–1504

    Google Scholar 

  55. Ojeda L, Cruz D, Reina G, Borenstein J (2006) Current-based slippage detection and odometry correction for mobile robots and planetary rovers. IEEE Trans Robot 22(2):366–378

    Article  Google Scholar 

  56. Anousaki G, Kyriakopoulos KJ (2007) Simultaneous localization and map building of skid-steered robots. IEEE Robot Autom Mag 14(1):79–89

    Article  Google Scholar 

  57. Ward CC, Iagnemma K (2008) A dynamic-model-based wheel slip detector for mobile robot on outdoor terrain. IEEE Trans Robot 24(4):821–831

    Article  Google Scholar 

  58. Yi J (2008) A piezo-sensor based “smart tire” system for mobile robots and vehicles. IEEE/ASME Trans Mechatron 13(1):95–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yokoyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Yokoyama, M. (2013). Modeling and Control of Wheeled Mobile Robots: From Kinematics to Dynamics with Slipping and Skidding. In: Nonami, K., Kartidjo, M., Yoon, KJ., Budiyono, A. (eds) Autonomous Control Systems and Vehicles. Intelligent Systems, Control and Automation: Science and Engineering, vol 65. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54276-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54276-6_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54275-9

  • Online ISBN: 978-4-431-54276-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics