Skip to main content

Metagenomic Approach Yields Insights into Fungal Diversity and Functioning

  • Chapter
  • First Online:
Species Diversity and Community Structure

Part of the book series: SpringerBriefs in Biology ((BRIEFSBIOL))

Abstract

Recent advances in molecular biological methods have drastically changed our understanding of the diversity, phylogeny, ecology, and evolution of fungi. The purpose of this chapter is to address recent progress in our knowledge about the biodiversity of fungi, with emphasis on the potential impact of pyrosequencing to estimate fungal diversity in environmental samples. Progress in DNA sequence-based techniques notably enables us not only to overcome potential flaws of traditional mycological techniques but also to evaluate fungal richness more efficiently and reliably. Especially, the development of next-generation sequencing technologies has revolutionized large-scale sequencing of environmental fungal DNA. A number of papers have been published regarding metagenomic analysis of fungal diversity in environmental samples, using Roche 454 pyrosequencing since 2009. The number of publications on fungal metagenomics will be accelerated, but there are potential methodological difficulties that have not been solved yet. DNA barcoding with universal genetic markers and high-quality sequence databases becomes more important as reliable taxonomic affiliations of numerous MOTUs are necessitated. Further studies are needed to test the applicability of pyrosequencing to such hot spots of fungal diversity as tropical forests and to explore functional aspects of fungal populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, VrÃ¥lstad T, Liimatainen K, Peintner U, Kõljalg (2010) The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fun Div 41:1–16

    Article  Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010a) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    Article  PubMed  CAS  Google Scholar 

  • Amend AS, Seifert KA, Samson R, Bruns TD (2010b) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci 107:13748–13753

    Article  PubMed  CAS  Google Scholar 

  • Arfi Y, Buée M, Marchand C, Levasseur A, Record E (2012) Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees Avicennia marina and Rhizophora stylosa. FEMS Microbiol Ecol 79:433–444

    Article  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108

    Article  PubMed  CAS  Google Scholar 

  • Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

    Article  PubMed  Google Scholar 

  • Biodiversity Center of Japan (2010) Biodiversity of Japan, a harmonious coexistence between nature and humankind. Heibonsha, Tokyo

    Google Scholar 

  • Blackwell M (2011) The fungi: 1,2,3 … 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Boddy L, Frankland J, van West P (2008) Ecology of saprotrophic basidiomycetes. Academic, London

    Google Scholar 

  • Brock PM, Doring H, Bidartondo MI (2008) How to know unknown fungi: the role of a herbarium. New Phytol 181:719–724

    Article  PubMed  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T (1987) The origin of fungi and pseudofungi. In: Rayner ADM, Chapman DJ (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge

    Google Scholar 

  • Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science 325:682–683

    Article  PubMed  CAS  Google Scholar 

  • Corlett RT, Primack RB (2011) Tropical rain forests: an ecological and biogeographical comparison. Wiley-Blackwell, Chinchester

    Book  Google Scholar 

  • Dentinger BTM, Didukh MY, Moncalvo JM (2011) Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina). PLoS One 6:e25081

    Article  PubMed  CAS  Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt U (2010) A constructive step towards selecting a DNA barcode for fungi. New Phytol 187:265–268

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa Y, Osono T, Takeda H (2012) Fungal decomposition of woody debris of Castanopsis sieboldii in a subtropical old-growth forest. Ecol Res 27:211–218

    Article  Google Scholar 

  • Gams W (1992) The analysis of communities of saprophytic microfungi with special reference to soil fungi. In: Winterhoff W (ed) Fungi in vegetation science. Kluwer, Dordrecht, pp 182–223

    Google Scholar 

  • Gazis R, Rehner S, Chaverri P (2011) Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 20:3001–3013

    Article  PubMed  Google Scholar 

  • Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713

    Article  PubMed  Google Scholar 

  • Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Res 11:759–769

    Article  CAS  Google Scholar 

  • Goel R, Kotay SM, Butler CS, Torres CI, Mahendra S (2011) Molecular biological methods in environmental engineering. Water Environ Res 29:927–955

    Article  Google Scholar 

  • Gonzalez MA, Baraloto C, Engel J, Mori SA, Pétronelli P, Riéra B, Roger A, Thébaud C, Chave J (2011) Identification of Amazonian trees with DNA barcodes. PLoS One 4:e7483

    Article  Google Scholar 

  • Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Uberbacher E, Tuskan GA, Vilgalys R, Doktycz MJ, Schadt CW (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944

    Article  PubMed  CAS  Google Scholar 

  • Groenewald JZ (2009) Update on fungal DNA barcoding campaigns. Persoonia 23:179

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüβler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Kirk PM (2009) Fungal ecology catches fire. New Phytol 184:279–282

    Article  PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fun Biol Rev 25:38–47

    Article  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  PubMed  Google Scholar 

  • Hughes KW, Petersen RH, Lickey EB (2009) Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species’ delimitation across basidiomycete fungi. New Phytol 182:795–798

    Article  PubMed  CAS  Google Scholar 

  • Hui N, Jumpponen A, Niskanen T, Liimatainen K, Jones KL, Koivula T, Romantschuk M, Strömmer R (2011) EcM fungal community structure, but not diversity, altered in a Pb-contaminated shooting range in a boreal coniferous forest site in Southern Finland. FEMS Microbiol Ecol 76:121–132

    Article  PubMed  CAS  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüβler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH, Hallwachs W (2011) Joining inventory by parataxonomists with DNA barcoding of a large complex tropical conserved wildland in Northwesetern Costa Rica. PLoS One 6:e18123

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH, Hallwachs W, Blandin P, Burns JM, Cadiou JM, Chacon I, Dapkey T, Deans AR, Epstein ME, Espinoza B, Franclemont JG, Haber WA, Hajibabaei M, Hall JW, Hebert PDN, Gauld ID, Harvey DJ, Hausmann A, Kitching IJ, Lafontaine D, Landry JF, Lemaire C, Miller JY, Miller JS, Miller L, Miller SE, Montero J, Munroe E, RabGreen S, Ratnasingham S, Rawlins JE, Robbins RK, Rodriguez JJ, Rougerie R, Sharkey MJ, Smith MA, Solis MA, Sullivan JB, Thiaucourt P, Wahl DB, Weller SJ, Whitfield JB, Willmott KR, Wood DM, Woodley NE, Wilson JJ (2009) Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Mol Ecol Resour 9:1–26

    Article  PubMed  CAS  Google Scholar 

  • Jennings DH, Lysek G (1999) Fungal biology, understanding the fungal life style. BIOS, Oxford

    Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448

    Article  PubMed  CAS  Google Scholar 

  • Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513

    Article  PubMed  CAS  Google Scholar 

  • Jumpponen A, Jones KL, Mattox D, Yaege C (2010a) Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol Ecol 19:41–53

    Article  PubMed  Google Scholar 

  • Jumpponen A, Jones KL, Blair J (2010b) Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 102:1027–1041

    Article  PubMed  Google Scholar 

  • Kellner H, Luis P, Schlitt B, Buscot F (2009) Temporal changes in diversity and expression patterns of fungal laccase genes within the organic horizon of a brown forest soil. Soil Biol Biochem 41:1380–1389

    Article  CAS  Google Scholar 

  • Kelly LJ, Hollingsworth PM, Coppins BJ, Ellis CJ, Harrold P, Tosh J, Yahr R (2011) DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytol 191:288–300

    Article  PubMed  Google Scholar 

  • Kirk P, Cannon P, Stalpers J (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford

    Google Scholar 

  • Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al-Soud WA, Sørensen SJ, Rosendahl S (2012) 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160

    Article  Google Scholar 

  • Lentendu G, Zinger L, Manel S, Coissac E, Choler P, Geremia RA, Melodelima C (2011) Assessment of soil fungal diversity in different alpine tundra habitats by means of pyrosequencing. Fun Div 49:113–123

    Article  Google Scholar 

  • Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phyum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4:1225–1235

    Article  PubMed  Google Scholar 

  • Lim YW, Kim BK, Kim C, Jung HS, Kim BS, Lee JH (2010) Assessment of soil fungal communities using pyrosequencing. J Microbiol 48:284–289

    Article  PubMed  Google Scholar 

  • Lucero ME, Unc A, Cooke P, Dowd S, Sun S (2011) Endophyte microbiome diversity in micropropagated Striplex canescens and Atriplex torreyi var griffithsii. PLoS One 6:e17693

    Article  PubMed  CAS  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    PubMed  CAS  Google Scholar 

  • Lutzoni F, Miadlikowska J (2009) Lichens. Curr Biol 19:502–503

    Article  Google Scholar 

  • Malausa T, Gilles A, Meglécz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-sereno P, Délye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lung-Escarmant B, Malé PJG, Ferreira S, Martin JF (2011) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Res 11:638–644

    Article  CAS  Google Scholar 

  • Mello A, Napoli C, Murat C, Morin E, Marceddu G, Bonfante P (2011) ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia 103:1184–1193

    Article  PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  • Min XJ, Hickey DA (2007) Assessing the effect of varing sequence length on DNA barcoding of fungi. Mol Ecol Notes 7:365–373

    Article  PubMed  CAS  Google Scholar 

  • Monchy S, Sanciu G, Jobard M, Rasconi S, Gerphagnon M, Chabé M, Cian A, Meloni D, Niquil N, Christaki U, Viscogliosi E, Sime-Ngando T (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 113:1433–1453

    Article  Google Scholar 

  • Moora M, Berger S, Davison J, Öpik M, Bommarco R, Bruelheide H, Kühn I, Kunin WE, Metsis M, Rortais A, Vanatoa A, Vanatoa E, Stout JC, Truusa M, Westphal C, Zobel M, Walther GR (2011) Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr 38:1305–1317

    Article  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern I, Klopman S, Hibbett DS (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J Mol Evol 66:243–257

    Article  PubMed  CAS  Google Scholar 

  • Nagy LG, Petkovits T, Kovács GM, Voigt K, Vágvölgyi C, Papp T (2011) Where is the unseen fungal diversity hidden? A study of Mortierella reveals a large contribution of reference collections to the identification of fungal environmental sequences. New Phytol 191:789–794

    Article  PubMed  Google Scholar 

  • Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform online 4:193–201

    PubMed  Google Scholar 

  • Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296:97–101

    Article  PubMed  CAS  Google Scholar 

  • Nilsson RH, Tedersoo L, Lindahl BD, Kjøller R, Carlsen T, Quince C, Abarenkov K, Pennanen T, Stenlid J, Bruns T, Larsson KH, Kõljalg U, Kauserud H (2011) Towards standardization of the description and publication of next-generation sequencing datasets of fungal communities. New Phytol 191:314–318

    Article  Google Scholar 

  • Nowrousian M (2010) Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solution to biological problems. Eukaryot Cell 9:1300–1310

    Article  PubMed  CAS  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  Google Scholar 

  • Okubo A, Sugiyama S (2009) Comparison of molecular fingerprinting methods for analysis of soil microbial community structure. Ecol Res 24:1399–1405

    Article  Google Scholar 

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Osono T (2011a) Yanbaru fungal biodiversity project. DIWPA Newslett 25:8–9

    Google Scholar 

  • Osono T (2011b) Diversity and functioning of fungi associated with leaf litter decomposition in Asian forests of different climatic regions. Fun Ecol 4:375–385

    Article  Google Scholar 

  • Osono T, Ishii Y, Hirose D (2008) Fungal colonization and decomposition of Castanopsis sieboldii leaf litter in a subtropical forest. Ecol Res 23:909–917

    Article  Google Scholar 

  • Ovaskainen O, Nokso-Koivisto J, Hottola J, Rajala T, Pennanen T, Ali-Kovero H, Miettinen O, Oinonen P, Auvinen P, Paulin L, Larsson KH, Mäkipää R (2010) Identifying wood-inhabiting fungi with 454 sequencing - what is the probability that BLAST gives the correct species? Fun Ecol 3:274–283

    Article  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Ryberg M, Kristiansson E, Sjökvist E, Nilsson RH (2008) An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web-based tool for the exploration of fungal diversity. New Phytol 181:471–477

    Article  Google Scholar 

  • Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111

    Article  Google Scholar 

  • Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Res 9:83–89

    Article  CAS  Google Scholar 

  • Seifert KA, Samson RA, Dewaard JR, Houbraken J, Levesque CA, Moncalvo JM, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using COI DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA 104:3901–3906

    Article  PubMed  CAS  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics in soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE (1991) An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric Ecosyst Environ 34:43–54

    Article  CAS  Google Scholar 

  • Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) Fungi. Curr Biol 19:840–845

    Article  Google Scholar 

  • Su C, Lei L, Duan Y, Zhang KQ, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Mirobiol Biotechnol 93:993–1003

    Article  CAS  Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia 98:838–849

    Article  PubMed  Google Scholar 

  • Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Phil Trans R Soc B 361:1947–1963

    Article  PubMed  Google Scholar 

  • Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354

    Article  PubMed  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial metholodogical biases. New Phytol 188:291–301

    Article  PubMed  CAS  Google Scholar 

  • Unterseher M, Jumpponen A, Öpik M, Tedersoo L, Moora M, Dormann CF, Schnittler M (2011) Species abundance distribution and richness estimations in fungal metagenomics - lessons learned from community ecology. Mol Ecol 20:275–285

    Article  PubMed  Google Scholar 

  • Valentini A, Pompanon F, Taberlet P (2008) DNA bacoding for ecologists. Trends Ecol Evol 24:110–117

    Article  PubMed  Google Scholar 

  • Voigt K, Kirk PM (2011) Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology. Appl Microbiol Biotechnol 90:41–57

    Article  PubMed  CAS  Google Scholar 

  • Wallander H, Johansson U, Sterkenburg E, Durling MB, Lindahl BD (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol 187:1124–1134

    Article  PubMed  CAS  Google Scholar 

  • Watling R, Frankland JC, Ainsworth AM, Issac S, Robinson CH (2002a) Tropical Mycology. Vol. 1. Macromycetes. CABI Publishing, Oxon

    Book  Google Scholar 

  • Watling R, Frankland JC, Ainsworth AM, Issac S, Robinson CH (2002b) Tropical Mycology. Vol. 1. Micromycetes. CABI Publishing, Oxon

    Book  Google Scholar 

  • Zamocky M, Obinger C (2010) Molecular phylogeny of heme peroxide. In: Torres E, Ayala M (eds) Biocatalysis based on heme peroxidases. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

I thank Dr. D. Hirose and Dr. E. Nakajima for critical reading of this manuscript; Mr. S. Matsuoka, Ms. C. Sakaguchi, Mr. K. Ito, Dr. S. Yazawa, Mr. O. Nishimura, Dr. H. Toju, and Dr. A. Tanabe for collaborations with pyrosequencing and bioinformatics. This work was supported by Global COE Program A06 of Kyoto University, the Japanese Ministry of Education, Culture and Sports (No. 23770083), a JGC-S Scholarship Foundation for Young Researchers, the New Technology Development Foundation, and Nippon Life Insurance Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Sota, T., Kagata, H., Ando, Y., Utsumi, S., Osono, T. (2014). Metagenomic Approach Yields Insights into Fungal Diversity and Functioning. In: Species Diversity and Community Structure. SpringerBriefs in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54261-2_1

Download citation

Publish with us

Policies and ethics