Skip to main content

Fabrication by Squeeze Casting

  • Chapter
  • First Online:
  • 1720 Accesses

Abstract

The history of squeeze casting as a fabrication process for MMCs is briefly described in this chapter. Squeeze casting is one of the liquid state fabrication techniques. We can learn essentials of the fabrication of composites from studying squeeze casting, because, during squeeze casting, mechanical energy is converted into interface energy at the reinforcement/matrix interface. This energy conversion is economical and efficient and means that composites can be fabricated with minimum energy using squeeze casting. In this chapter, the threshold pressure equation for infiltration into preforms is introduced, and the infiltration energy, effect of preform preheat temperature, and microscopic phenomena occurring during infiltration of molten metal are discussed theoretically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Suzuki, S., Ochiai, M., Itoh, M., Shirayanagi, I., Awano, T.: Effect of high pressure applied during the solidification of alloys (I), Al-Si binary system. Rep. Natl. Ind. Res. Inst. Nagoya 10, 299–307 (1961)

    Google Scholar 

  2. Suzuki, S., Ochiai, M., Shirayanagi, I., Itoh, M., Kurahashi, S., Awano, T.: Effect of high pressure applied during the solidification of alloys (II), Al-Si binary system. Rep. Natl. Ind. Res. Inst. Nagoya 11, 10–614 (1962)

    Google Scholar 

  3. Nishida, Y., Matsubara, H., Shirayanagi, I., Suzuki, S.: Fundamental study on the squeeze casting. Bull. Jpn. Inst. Met. 19, 895–902 (1980)

    Article  Google Scholar 

  4. Suzuki, S., Shirayanagi, I., Izawa, N., Nishida, Y., Ochiai, M.: 31st Fall Meeting of Japan Institute of Light Metals, p. 23 (1966). Preprint

    Google Scholar 

  5. Suzuki, S., Nishida, Y., Shirayanagi, I., Izawa, N., Matsubara, H.: Segregation in aluminium alloys solidified under high pressure. Aluminium 59, 544–546 (1983)

    Google Scholar 

  6. Imagawa, K., Nagata, S., Kitahara, A., Akiyama, S., Ueno, H.: 41st Fall Meeting of Japan Institute of Light Metals, p. 1 (1971). Preprint. How to process shirasu balloon-metal composite. Jpn. Inst. Light Met. 23, 282–284 (1973)

    Google Scholar 

  7. Suzuki, S., Shirayanagi, I., Matsubara, H., Izawa, N., Kobayashi, N.: Aluminum/glass-fiber composites by squeeze casting (i) (Fabrication condition). In: 52nd Spring Meeting of Japan Institute of Light Metals, p. 3 (1977). Preprint

    Google Scholar 

  8. Nakata, E., Kagawa, Y.: Evaluation of the toughness of high volume fraction W/Al composites. J. Mater. Sci. Lett. 3, 968–970 (1984)

    Article  Google Scholar 

  9. Kagawa, Y., Oishi, Y., Yoshida, S., Nakata, E.: Workability of helical fiber reinforced composite metal. J. Jpn. Soc. Compos. Mater. 7, 140–146 (1981)

    Article  Google Scholar 

  10. Nakata, E., Kagawa, Y., Terao, H.: Fabrication and properties of tubular type composite by squeeze casting method. J. Jpn. Soc. Compos. Mater. 9, 115–117 (1983)

    Article  Google Scholar 

  11. Kagawa, Y.: Application of casting technology to fiber reinforced metals. Imono (J. Jpn. Foundry Eng. Soc.) 58, 614–621 (1986)

    Google Scholar 

  12. Kagawa, Y.: Fiber Reinforced Metals, p. 147. CMC, Tokyo (1985) (in Japanese)

    Google Scholar 

  13. Towata, S., Yamada, S.: Interaction between SiC fibers and aluminum alloys. J. Jpn. Inst. Met. 47, 159–165 (1983)

    Google Scholar 

  14. Towata, S., Ikuno, H., Yamada, S.: Mechanical properties of carbon fiber-reinforced aluminum alloys with whiskers and particulates of silicon-carbide. Trans. JIM 29, 314–321 (1988)

    Google Scholar 

  15. Nishida, Y., Imai, T., Yamada, M., Matsubara, H., Shirayanagi, I.: Fabrication of potassium titanate whisker/aluminum composites and some their properties. J. Jpn. Inst. Light Met. 38, 515–521 (1988)

    Article  Google Scholar 

  16. Matsubara, H., Nishida, Y., Shirayanagi, I., Yamada, M.: Fabrication of silicon nitride whisker/aluminum alloy composites and some their properties. J. Jpn. Inst. Light Met. 39, 338–343 (1989)

    Article  Google Scholar 

  17. Suganuma, K., Sasaki, G., Fujita, T., Suzuki, N.: Interfacial reaction between aluminum borate whisker and AC8A and 6061 aluminum alloys. J. Jpn. Inst. Light Met. 41, 297–303 (1991)

    Article  Google Scholar 

  18. Saito, N., Nakanishi, M., Nishida, Y.: Effect of heat treatment on the mechanical properties of aluminum-borate whisker reinforced 6061 aluminum alloy. J. Jpn. Inst. Light Met. 44, 86–90 (1994)

    Article  Google Scholar 

  19. Kim, J.-s., Sugamata, M., Kaneko, J.: Effect of hot extrusion on the mechanical properties of SiC whisker/AZ91 magnesium alloy composites. J. Jpn. Inst. Met. 55, 521–528 (1991)

    Google Scholar 

  20. Kim, J.-s., Kaneko, J., Sugamata, M.: High temperature deformation of SiC whisker/AZ91 magnesium alloy and SiC whisker/2324 aluminum alloy composites. J. Jpn. Inst. Met. 56, 819–827 (1992)

    Google Scholar 

  21. Donomoto, T., Miura, N., Funatani, K., Miyake, N.: Ceramic fiber reinforced piston for high performance diesel engines. SAE Paper No. 830252 (1983)

    Google Scholar 

  22. Hayashi, T., Ushio, H., Ebisawa, M.: The properties of hybrid fiber reinforced metal and its application for engine block. SAE Paper No. 890557 (1989). Wear properties of hybrid fiber reinforced aluminum matrix composites and application to an automotive engine block. J. Jpn. Inst. Light Met. 40, 787–792 (1990)

    Google Scholar 

  23. Komatsubara, T., Okajima, M., Koyasukata, Y., Hoshino, H.: Sanyo Tech. Rev. 20, 107 (1988)

    Google Scholar 

  24. Clyne, T.W., Withers, P.J.: An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  25. Clyne, T.W., Bader, M.G., Cappleman, G.R., Hubert, P.A.: The use of a δ-alumina fibre for metal-matrix composites. J. Mater. Sci. 20, 85–96 (1985)

    Article  Google Scholar 

  26. Lacoste, E., Aboulfatah, M., Danis, M., Girot, F.: Numerical simulation of the infiltration of fibrous preforms by a pure metal. Metall. Trans. 24A, 2667–2678 (1993)

    Article  Google Scholar 

  27. Carman, P.C.: Capillary rise and capillary movement of moisture in fine sands. Soil Sci. 52, 1–14 (1941)

    Article  Google Scholar 

  28. White, L.R.: Capillary rise in powders. J. Colloid Interface Sci. 90, 536–538 (1982)

    Article  Google Scholar 

  29. Mortensen, A., Cornie, J.A.: On the infiltration of metal matrix composites. Metall. Trans. 18A, 1160–1163 (1987)

    Article  Google Scholar 

  30. Nakanishi, H., Tsunekawa, Y., Okumiya, M., Higashi, M., Niimi, I.: Influence of fiber array on the threshold pressure of infiltration in alumina fiber/aluminum composite system. J. Jpn. Inst. Light Met. 41, 325–330 (1991)

    Article  Google Scholar 

  31. Nakanishi, H., Tsunekawa, Y., Okumiya, M., Niimi, I.: Influence of processing parameters on the threshold pressure of infiltration in alumina fiber/aluminum composite system. J. Jpn. Inst. Light Met. 41, 576–581 (1991)

    Article  Google Scholar 

  32. Nakanishi, H., Tsunekawa, Y., Okumiya, M., Higashi, M., Niimi, I.: Threshold pressure for infiltration in mica-ceramic particle/aluminum composite. J. Jpn. Inst. Light Met. 42, 92–97 (1992)

    Article  Google Scholar 

  33. Nakanishi, H., Tsunekawa, Y., Okumiya, M., Mohri, N., Niimi, I., Satoh, M.: Ultrasonic infiltration in alumina particle/molten aluminum system assisted by exothermic reaction of titanium aluminide formation. J. Jpn. Inst. Met. 57, 81–87 (1993)

    Google Scholar 

  34. Oh, S.-Y., Cornie, J.A., Russell, K.C.: Wetting of ceramic particulates with liquid aluminum alloys: Part I. Experimental techniques. Metall. Trans. 20A, 527–532 (1989)

    Article  Google Scholar 

  35. Oh, S.-Y., Cornie, J.A., Russell, K.C.: Wetting of ceramic particulates with liquid aluminum alloys: Part II. Study of wetting. Metall. Trans. 20A, 533–541 (1989)

    Article  Google Scholar 

  36. Nagata, S., Matsuda, K.: Effects of particle preheating temperature on the length of metal-particle composite in pressure casting. Imono (J. Jpn. Foundry Eng. Soc.) 53, 300–304 (1981)

    Google Scholar 

  37. Nagata, S., Matsuda, K.: Pressure casting conditions of metal-hybrid particle composites and their applications. Imono 54, 657–663 (1982)

    Google Scholar 

  38. Nagata, S., Matsuda, K.: Effects of some factors on the critical preheating temperature of particles in producing metal-particle composites by pressure casting. Imono 53, 686–691 (1981)

    Google Scholar 

  39. Nagata, S., Matsuda, K.: On the condition of the pressure infiltration method for metal composites. Bull. Jpn. Inst. Met. 25, 1026–1033 (1986)

    Article  Google Scholar 

  40. Nagata, S., Kitahara, A., Akiyama, S., Ueno, H.: Making metal composite by pressure casting. AFS Trans. 85–08, 49–54 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Nishida, Y. (2013). Fabrication by Squeeze Casting. In: Introduction to Metal Matrix Composites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54237-7_3

Download citation

Publish with us

Policies and ethics