Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 967 Accesses

Abstract

The merger of black hole (BH)–neutron star (NS) binaries will give us a unique opportunity to explore many aspects of unknown physics in the near future. Gravitational waves from the merger of such binaries will tell us invaluable information of the NS properties, especially of the equation of state (EOS) at nuclear and supranuclear density. In particular, the EOS strongly modifies the gravitational waveform when the NS is tidally disrupted by the tidal force field of the BH before they merge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the merger of binary NSs, a frequent outcome will not be a BH, but be a hypermassive NS [2123]. If the hypermassive NS is formed, gravitational waves just after the merger are not emitted by the BH ringdown, but by oscillation of the hypermassive NS. We do not go into detail of the hypermassive NS, because it is not relevant to the BH–NS binary. It should be noted that gravitational waves from hypermassive NSs will tell us information at higher density than at the central density of a canonical NS.

  2. 2.

    \(G=6.67 \times 10^{-8}\,\mathrm{{g}}^{-1}\,\mathrm{{cm}}^3\,\mathrm{{s}}^{-2}, c=3.00 \times 10^{10}\,\mathrm{cm}\,\mathrm{{s}}^{-1}\).

  3. 3.

    The existence of intermediate GRBs is also suggested by several observations, but is not conclusive.

  4. 4.

    We neglect the effect of the cosmological redshift for simplicity. This simplification does not change the conclusion, particularly for short-hard GRBs.

  5. 5.

    For a short-hard GRB, it is suggested that the opacity of \(e^- e^+\) pair production from two photons itself gives a weaker constraint compared to the case of a long GRB [39].

  6. 6.

    The possibility of a stable mass transfer is also suggested [56]. The stable mass transfer occurs if the orbital separation increases faster than the NS radius increases when the mass is tidally stripped from the NS (lighter component) to the BH (heavier component). We do not discuss the stable mass transfer in more detail, because it has never been observed in numerical-relativity simulations. The reason for this may be that the stable mass transfer requires a large mass ratio, whereas the mass shedding requires a small mass ratio especially in full general relativity [57]. It does not exclude the stable mass transfer for a BH–NS binary with a massive and rapidly-spinning BH.

  7. 7.

    We essentially compare the mass density of each object.

  8. 8.

    In this thesis, “the ISCO radius” always represents “the ISCO radius in the Boyer-Lindquist coordinates,” which is physical in the sense that it gives the proper circumferential length for the equatorial circular orbit. It should be noted that the coordinate radius of the ISCO in numerical-relativity simulation is different from the Boyer-Lindquist one.

  9. 9.

    Currently, there is no consistent method to compute quasiequilibrium states of magnetized compact binaries. The simulation for a magnetized compact binary is performed by superposing a magnetic field on a nonmagnetized initial condition, more or less artificially.

  10. 10.

    We should also mention works done by Stephens et al. and East et al. (the same authors except for ordering) [115, 116], in which hyperbolic encounters of BH and NS are studied with the same EOS as that adopted in this thesis.

  11. 11.

    In this thesis, “prograde” and “retrograde” spins mean the BH spins which are aligned and antialigned with the orbital angular momentum of the binary, respectively.

References

  1. J. Abadie et al., Nucl. Instrum. Methods. Phys. Res. Sect. A 624, 223 (2010)

    Google Scholar 

  2. T. Accadia et al., Class. Quant. Grav. 28, 025005 (2011)

    Google Scholar 

  3. R.A. Hulse, J.H. Taylor, Astrophys. J. 195, L51 (1975)

    Google Scholar 

  4. K. Kuroda et al., Class. Quant. Grav. 27, 084004 (2010)

    Google Scholar 

  5. B.S. Sathyaprakash, B.F. Schutz, Living Rev. Relativ. 12, 2 (2009)

    Google Scholar 

  6. B. Abbott et al., Astrophys. J. 683, L45 (2009)

    Google Scholar 

  7. B. Abbott et al., Astrophys. J. 706, L203 (2009)

    Google Scholar 

  8. B. Abbott et al., Nature 460, 990 (2009)

    Google Scholar 

  9. J. Abadie et al., Astrophys. J. 737, 93 (2011)

    Google Scholar 

  10. L. Lindblom, Astrophys. J. 398, 569 (1992)

    Google Scholar 

  11. M. Vallisneri, Phys. Rev. Lett. 84, 3519 (2000)

    Google Scholar 

  12. J.S. Read, C. Markakis, M. Shibata, K. Uryū, J.D.E. Creighton, J.L. Friedman, Phys. Rev. D 79, 124033 (2009)

    Google Scholar 

  13. V. Ferrari, L. Gualtieri, F. Pannarale, Phys. Rev. D 81, 064026 (2010)

    Google Scholar 

  14. F. Pannarale, A. Tonita, L. Rezzolla, Astrophys. J. 727, 95 (2011)

    Google Scholar 

  15. F. Pannarale, L. Rezzolla, F. Ohme, J.S. Read, Phys. Rev. D 84, 104017 (2011)

    Google Scholar 

  16. C. Messenger, J. Read, Phys. Rev. Lett. 108, 091101 (2012)

    Google Scholar 

  17. M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010)

    Google Scholar 

  18. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)

    Google Scholar 

  19. V. Kalogera, K. Belczynski, C. Kim, R. O’Shaughnessy, B. Willems, Phys. Rep. 442, 75 (2007)

    Google Scholar 

  20. L. Blanchet, Living Rev. Relativ. 9, 4 (2006)

    Google Scholar 

  21. K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, K. Kiuchi, Phys. Rev. D 83, 124008 (2011)

    Google Scholar 

  22. Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, Phys. Rev. Lett. 107, 051102 (2011)

    Google Scholar 

  23. Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, Phys. Rev. Lett. 107, 211101 (2011)

    Google Scholar 

  24. E. Berti, V. Cardoso, A.O. Starinets, Class. Quant. Grav. 26, 163001 (2009)

    Google Scholar 

  25. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)

    Google Scholar 

  26. P.C. Peters, J. Mathews, Phys. Rev. 131, 435 (1963)

    Google Scholar 

  27. P.C. Peters, Phys. Rev. 136, B1224 (1964)

    Google Scholar 

  28. D.R. Lorimer, Living Rev. Relativ. 11, 8 (2008)

    Google Scholar 

  29. K. Belczynski, V. Kalogera, F.A. Rasio, R.E. Taam, A. Zezas, T. Bulik, T.J. Maccarone, N. Ivanova, Astrophys. J. Suppl. 174, 223 (2008)

    Google Scholar 

  30. J. Abadie et al., Class. Quant. Grav. 27, 173001 (2010)

    Google Scholar 

  31. K. Belczynski, T. Bulik, C.L. Fryer, A. Ruiter, F. Valsecchi, J.S. Vink, J.R. Hurley, Astrophys. J. 714, 1217 (2010)

    Google Scholar 

  32. K. Belczynski, R.E. Taam, V. Kalogera, F.A. Rasio, T. Bulik, Astrophys. J. 662, 504 (2007)

    Google Scholar 

  33. R. O’Shaughnessy, V. Kalogera, K. Belczynski, Astrophys. J. 716, 615 (2010)

    Google Scholar 

  34. R. Narayan, B. Paczyński, T. Piran, Astrophys. J. 395, L83 (1992)

    Google Scholar 

  35. B.D. Metzger, E. Berger, Astrophys. J. 746, 48 (2012)

    Google Scholar 

  36. T. Piran, Phys. Rep. 314, 575 (1999)

    Google Scholar 

  37. T. Piran, Rev. Mod. Phys. 76, 1143 (2004)

    Google Scholar 

  38. Y. Lithwick, R. Sari, Astrophys. J. 555, 540 (2001)

    Google Scholar 

  39. E. Nakar, Phys. Rep. 442, 166 (2007)

    Google Scholar 

  40. S.E. Woosley, Astrophys. J. 405, 273 (1993)

    Google Scholar 

  41. E. Berger et al., Nature 438, 988 (2005)

    Google Scholar 

  42. W. Fong, E. Berger, R. Chornock, N.R. Tanvir, A.J. Levan, J.F. Graham, A.S. Fruchter, A. Cucchiara, D.B. Fox, Astrophys. J. 730, 26 (2011)

    Google Scholar 

  43. W.H. Lee, E. Ramirez-Ruiz, New J. Phys 9, 17 (2007)

    Google Scholar 

  44. J. Goodman, A. Dar, S. Nussinov, Astrophys. J. 314, L7 (1987)

    Google Scholar 

  45. D. Eichler, M. Livio, T. Piran, D.N. Schramm, Nature 340, 126 (1989)

    Google Scholar 

  46. K. Kohri, S. Mineshige, Astrophys. J. 577, 311 (2002)

    Google Scholar 

  47. R.D. Blandford, R.D. Znajek, Mon. Not. Roy. Astron. Soc. 179, 433 (1977)

    Google Scholar 

  48. D. Macdonald, K.S. Thorne, Mon. Not. Roy. Astron. Soc. 198, 345 (1982)

    Google Scholar 

  49. J.C. McKinney, Mon. Not. Roy. Astron. Soc. 368, 1561 (2006)

    Google Scholar 

  50. J.M. Lattimer, D.N. Schramm, Astrophys. J. 192, L145 (1974)

    Google Scholar 

  51. Y. Qian, G.J. Wasserburg, Phys. Rep. 442, 237 (2007)

    Google Scholar 

  52. F.-K. Thielemann et al., Prog. Part. Nucl. Phys. 66, 346 (2011)

    Google Scholar 

  53. S.E. Woosley, J.R. Wilson, G.J. Mathews, R.D. Hoffman, B.S. Meyer, Astrophys. J. 433, 229 (1994)

    Google Scholar 

  54. L.X. Li, B. Paczyński, Astrophys. J. 507, L59 (1998)

    Google Scholar 

  55. B.D. Metzger, G. Martínez-Pinedo, S. Darbha, E. Quataert, A. Arcones, D. Kasen, R. Thomas, P. Nugent, I.V. Panov, N.T. Zinner, Mon. Not. Roy. Astron. Soc. 406, 2650 (2010)

    Google Scholar 

  56. J.P.A. Clark, D.M. Eardley, Astrophys. J. 215, 311 (1977)

    Google Scholar 

  57. M. Shibata, K. Taniguchi, Living Rev. in Relativ. 14, 6 (2011)

    Google Scholar 

  58. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347 (1972)

    Google Scholar 

  59. L.G. Fishbone, Astrophys. J. 185, 43 (1973)

    Google Scholar 

  60. B. Mashhoon, Astrophys. J. 197, 705 (1975)

    Google Scholar 

  61. J.A. Marck, Proc. Roy. Soc. Lond. 385, 431 (1983)

    Google Scholar 

  62. M. Shibata, Prog. Theor. Phys. 96, 917 (1996)

    Google Scholar 

  63. P. Wiggins, D. Lai, Astrophys. J. 532, 530 (2000)

    Google Scholar 

  64. M. Ishii, M. Shibata, Y. Mino, Phys. Rev. D 71, 044017 (2005)

    Google Scholar 

  65. V. Ferrari, L. Gualtieri, F. Pannarale, Class. Quant. Grav. 26, 125004 (2009)

    Google Scholar 

  66. K. Taniguchi, T.W. Baumgarte, J.A. Faber, S.L. Shapiro, Phys. Rev. D 75, 084005 (2007)

    Google Scholar 

  67. K. Taniguchi, T.W. Baumgarte, J.A. Faber, S.L. Shapiro, Phys. Rev. D 77, 044003 (2008)

    Google Scholar 

  68. M. Shibata, K. Taniguchi, Phys. Rev. D 77, 084015 (2008)

    Google Scholar 

  69. M. Miller, (2001)

    Google Scholar 

  70. S. Brandt, B. Brügmann, Phys. Rev. Lett. 78, 3606 (1997)

    Google Scholar 

  71. J.W. York, in Gravitational Radiation, ed. by L. Smarr (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  72. T.W. Baumgarte, M.L. Skoge, S.L. Shapiro, Phys. Rev. D 70, 064040 (2004)

    Article  ADS  Google Scholar 

  73. K. Taniguchi, T.W. Baumgarte, J.A. Faber, S.L. Shapiro, Phys. Rev. D 72, 044008 (2005)

    Article  ADS  Google Scholar 

  74. P. Grandclément, J. Novak, Living Rev. Relativ. 12, 1 (2009)

    ADS  Google Scholar 

  75. P. Grandclément, Phys. Rev. D 74, 124002 (2006)

    Article  ADS  Google Scholar 

  76. P. Grandclément, Phys. Rev. D 75, 129903(E) (2007)

    Google Scholar 

  77. E. Gourgoulhon, P. Grandclément, S. Bonazzola, Phys. Rev. D 65, 044020 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  78. P. Grandclément, E. gourgoulhon, S. Bonazzola, Phys. Rev. D 65, 044021 (2002)

    Google Scholar 

  79. K. Taniguchi, T.W. Baumgarte, J.A. Faber, S.L. Shapiro, Phys. Rev. D 74, 041502(R) (2006)

    Google Scholar 

  80. G.B. Cook, Phys. Rev. D 65, 084003 (2002)

    Article  ADS  Google Scholar 

  81. G.B. Cook, H.P. Pfeiffer, Phys. Rev. D 70, 104016 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  82. F. Foucart, L.E. Kidder, H.P. Pfeiffer, S.A. Teukolsky, Phys. Rev. D 77, 124051 (2008)

    Article  ADS  Google Scholar 

  83. G. Lovelace, R. Owen, H.P. Pfeiffer, T. Chu, Phys. Rev. D 78, 084017 (2008)

    Article  ADS  Google Scholar 

  84. H.P. Pfeiffer, D.A. Brown, L.E. Kidder, L. Lindblom, G. Lovelace, M.A. Scheel, Class. Quant. Grav. 24, S59 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 79, 124018 (2009)

    Article  ADS  Google Scholar 

  86. M. Shibata, K. Uryū, Phys. Rev. D 74, 121503(R) (2006)

    Google Scholar 

  87. M. Shibata, K. Uryū, Class. Quant. Grav. 24, S125 (2007)

    Article  ADS  MATH  Google Scholar 

  88. W. Kluźniak, W.H. Lee, Astrophys. J. 494, L53 (1998)

    Article  ADS  Google Scholar 

  89. W.H. Lee, W. Kluźniak, Astrophys. J. 526, 178 (1999)

    Article  ADS  Google Scholar 

  90. H.T. Janka, T. Eberl, M. Ruffert, C.L. Fryer, Astrophys. J. 527, L39 (1999)

    Article  ADS  Google Scholar 

  91. J.M. Lattimer, F.D. Swesty, Nucl. Phys. A 535, 331 (1991)

    Article  ADS  Google Scholar 

  92. S. Rosswog, R. Speith, G.A. Wynn, Mon. Not. Roy. Astron. Soc. 351, 1121 (2004)

    Article  ADS  Google Scholar 

  93. S. Rosswog, Astrophys. J. 634, 1202 (2005)

    Article  ADS  Google Scholar 

  94. M. Ruffert, H.T. Janka, Astron. Astrophys. 514, A66 (2010)

    Article  ADS  Google Scholar 

  95. J. Faber, T.W. Baumgarte, S.L. Shapiro, K. Taniguchi, F.A. Rasio, Phys. Rev. D 73, 024012 (2006)

    Article  ADS  Google Scholar 

  96. J. Faber, T.W. Baumgarte, S.L. Shapiro, K. Taniguchi, Astrophys. J. 641, L93 (2006)

    Article  ADS  Google Scholar 

  97. J.R. Wilson, G.J. Mathews, Phys. Rev. Lett. 75, 4161 (1995)

    Article  ADS  Google Scholar 

  98. J.R. Wilson, G.J. Mathews, P. Marronetti, Phys. Rev. D 54, 1317 (1996)

    Article  ADS  Google Scholar 

  99. E. Rantsiou, S. Kobayashi, P. Laguna, F.A. Rasio, Astrophys. J. 680, 1326 (2008)

    Article  ADS  Google Scholar 

  100. C.F. Soupuerta, U. Sperhake, P. Laguna, Class. Quant. Grav. 23, S579 (2006)

    Article  ADS  Google Scholar 

  101. M. Campanelli, C.O. Lousto, P. Marronetti, Y. Zlochower, Phys. Rev. Lett. 96, 111101 (2006)

    Article  ADS  Google Scholar 

  102. J.G. Baker, J. Centrella, D.I. Choi, M. Koppitz, J. van Meter, Phys. Rev. Lett. 96, 111102 (2006)

    Article  ADS  Google Scholar 

  103. Z.B. Etienne, J.A. Faber, Y.T. Liu, S.L. Shapiro, K. Taniguchi, T.W. Baumgarte, Phys. Rev. D 77, 084002 (2008)

    Article  ADS  Google Scholar 

  104. Z.B. Etienne, Y.T. Liu, S.L. Shapiro, T.W. Baumgarte, Phys. Rev. D 79, 044024 (2009)

    Article  ADS  Google Scholar 

  105. M.D. Duez, F. Foucart, L.E. Kidder, H.P. Pfeiffer, M.A. Scheel, S.A. Teukolsky, Phys. Rev. D 78, 104015 (2008)

    Article  ADS  Google Scholar 

  106. M. Shibata, K. Kyutoku, T. Yamamoto, K. Taniguchi, Phys. Rev. D 79, 044030 (2009)

    Article  ADS  Google Scholar 

  107. T. Yamamoto, M. Shibata, K. Taniguchi, Phys. Rev. D 78, 064054 (2008)

    Article  ADS  Google Scholar 

  108. S. Chawla, M. Anderson, M. Besselman, L. Lehner, S.L. Liebling, P.M. Motl, D. Neilsen, Phys. Rev. Lett. 105, 111101 (2010)

    Article  ADS  Google Scholar 

  109. Z.B. Etienne, Y.T. Liu, V. Paschalidis, S.L. Shapiro, Phys. Rev. D 85, 064029 (2012)

    Article  ADS  Google Scholar 

  110. F. Foucart, M.D. Duez, L.E. Kidder, S.A. Teukolsky, Phys. Rev. D 83, 024005 (2011)

    Article  ADS  Google Scholar 

  111. F. Foucart, M.D. Duez, L.E. Kidder, M.A. Scheel, B. Szilágyi, S.A. Teukolsky, Phys. Rev. D 85, 044015 (2012)

    Article  ADS  Google Scholar 

  112. H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Nucl. Phys. A 637, 435 (1998)

    Article  ADS  Google Scholar 

  113. H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Prog. Theor. Phys. 100, 1013 (1998)

    Article  ADS  Google Scholar 

  114. M.D. Duez, F. Foucart, L.E. Kidder, C.D. Ott, S.A. Teukolsky, Class. Quant. Grav. 27, 114106 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  115. B.C. Stephens, W.E. East, F. Pretorius, Astrophys. J. 737, L5 (2011)

    Article  ADS  Google Scholar 

  116. W.E. East, F. Pretorius, B.C. Stephens, Phys. Rev. D 85, 124009 (2012)

    Article  ADS  Google Scholar 

  117. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 82, 044049 (2010)

    Article  ADS  Google Scholar 

  118. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 049902(E) (2011)

    Google Scholar 

  119. K. Kyutoku, H. Okawa, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 064018 (2011)

    Article  ADS  Google Scholar 

  120. J.E. McClintock, R.A. Remillard, in Compact Stellar X-ray Sources, ed. by W.H.G. Lewin, M. van der Klis (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  121. R.M. Wald, General Relativity (The university of Chicago press, 1984)

    Google Scholar 

  122. E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge university press, Cambridge, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koutarou Kyutoku .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Kyutoku, K. (2013). Introduction. In: The Black Hole-Neutron Star Binary Merger in Full General Relativity. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54201-8_1

Download citation

Publish with us

Policies and ethics