Skip to main content

Part of the book series: Modern Otology and Neurotology ((MODOTOL))

  • 287 Accesses

Abstract

The ABR (Auditory Brainstem Response) is the neurological activity that is generated and transmitted along the auditory neural pathways from the cochlea on its way to the medial geniculate body (MGB) in the brain.

This response, which can be recorded from external electrodes pasted onto the skull and mastoid process of the subject, is therefore called a “far-field recording” which means that the electrodes recording this response are externally placed on the skull, quite distant from the actual neurologic activity within the brainstem.

Stereotypical in that this ABR waveform is remarkably similar in overall form across mammalian species (human, simians, cats, rabbits, etc.). As this response traverses the neurological substrate, it passes through various nuclei which each generate a positive potential (wave), the ABR waveform, related to its source (P1; cochlear nerve, P2; cochlear nucleus, P3; superior olivary complex, P4 and P5; lateral lemniscus nucleus and inferior colliculus, P6; brachium of inferior colliculus, and MGB in the brain). Neurophysiological knowledge of the sources, peak latencies and amplitudes of these seven waves are clinically valuable not only for evaluating peripheral hearing loss but also in localizing lesions within the eighth cranial nerve over its length from the cochlea to the midbrain inferior colliculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchwald JS, Huang C. Far-field acoustics response: origins in the cat. Science. 1975;189:382–4.

    Article  CAS  PubMed  Google Scholar 

  2. Jewett DL. Volume-conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroencephalogr Clin Neurophysiol. 1970;28:609–18.

    Article  CAS  PubMed  Google Scholar 

  3. Achor LJ, Starr A. Auditory brains stem responses in the cat. I. Intracranial and extra-cranial recordings. Electroencephalogr Clin Neurophysiol. 1980;48:154–73.

    Article  CAS  PubMed  Google Scholar 

  4. Achor LJ, Starr A. Auditory brain stem responses in the cat. II. Effects of lesions. Electroencephalogr Clin Neurophysiol. 1980;48:174–90.

    Article  CAS  PubMed  Google Scholar 

  5. Caird D, Sontheimer D, Klinkc R. Intra-and extracranially recorded auditory evoked potentials in the cat. I. Source location and binaural interaction. Electroencephalogr Clin Neurophysiol. 1985;61:50–60.

    Article  CAS  PubMed  Google Scholar 

  6. Fullerton BF, Kiang NYS. The effect of brain stem lesions on brain stem auditory evoked potentials in the cat. Hear Res. 1990;49:363–90.

    Article  CAS  PubMed  Google Scholar 

  7. Melcher JR, Knudson IM, Fullerton BC, et al. Generators of the brain stem auditory evoked potentials in cat. I. an experimental approach to their identification. Hear Res. 1996;93:1–27.

    Article  CAS  PubMed  Google Scholar 

  8. Melcher JR, Guinan JJ, Knudson IM, et al. Generators of the brain stem auditory evoked potentials in cat. II. Correlating lesions sites with waveform change. Hear Res. 1996;93:28–51.

    Article  CAS  PubMed  Google Scholar 

  9. Melcher JR, Kiang NYS. Generators of the brain stem auditory evoked potential in cat. III. Identified cell populations. Hear Res. 1996;93:52–71.

    Article  CAS  PubMed  Google Scholar 

  10. Kaga K, Shinoda Y, Suzuki J-I. Origin of auditory brainstem responses in cats: whole brainstem mapping, and a lesion and HRP study of the inferior colliculus. Acta Otolaryngol. 1997;117(2):197–201.

    Article  CAS  PubMed  Google Scholar 

  11. Kaga K, editor. Central auditory pathway disorders. Tokyo, Berlin, NY: Springer; 2009.

    Google Scholar 

  12. Starr A, Hamilton AE. Correlation between confirmed sites of neurological lesions and abnormalities of far-field auditory brainstem responses. Electroencephalogr Clin Neurophysiol. 1976;41:595–608.

    Article  CAS  PubMed  Google Scholar 

  13. Stockard JJ, Rossiter VS. Clinical and pathologic correlates of brain stem auditory response abnormalities. Neurol. 1977;27:316–25.

    Article  CAS  Google Scholar 

  14. Hasimoto I. Neural generators of early auditory evoked potential components in man. In: Kunze K, et al., editors. Clinical problems of brain stem disorders. NY: Georg Thime; 1986. p. 111–20.

    Google Scholar 

  15. Møller AR. Neural mechanisms of BAEP. Functional Neuroscience: Evoked Potentials and Magnetic Fields (EEG Suppl, 49) 1997:27–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimitaka Kaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaga, K., Hughes, D.W. (2022). Origins of ABR. In: Kaga, K. (eds) ABRs and Electrically Evoked ABRs in Children. Modern Otology and Neurotology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54189-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54189-9_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54188-2

  • Online ISBN: 978-4-431-54189-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics