Abstract
Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Quirk RP, Hsieh H (1996) Anionic polymerization – principles and practical application. Marcel Dekker, Inc, New York
Szwarc M (1956) “Living” polymers. Nature 178:1168–1169. doi:10.1038/1781168a0
Szwarc M, Levy M, Milkovich R (1956) Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J Am Chem Soc 78:2656–2657. doi:10.1021/ja01592a101
Szwarc M (1968) Carbanions, living polymers, and electron transfer processes. Interscience, New York
Quirk RP, Lee B (1992) Experimental criteria for living polymerizations. Polym Int 27:359–367. doi:10.1002/pi.4990270412
Penczek S, Kubisa P (1989) In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering, Supplemental volume. Wiley-Interscience, New York, p 380
Flory PJ (1940) Molecular size distribution in ethylene oxide polymers. J Am Chem Soc 62:1561–1565. doi:10.1021/ja01863a066
Lee W, Lee H, Cha J, Chang T, Hanley KJ, Lodge TP (2000) Molecular weight distribution of polystyrene made by anionic polymerization. Macromolecules 33:5111–5115. doi:10.1021/ma992121t
Iatrou H, Mays JW, Hadjichristidis N (1998) Regular comb polystyrenes and graft polyisoprene/polystyrene copolymers with double branches (“centipedes”). Quality of (1,3-pheynylene)bis(3-methyl-1-phenylpentylidene)dilithum initiator in the presence of polar additives. Macromolecules 31:6697–6701
Fetters LJ (1966) Procedures for homogeneous anionic polymerization. J Res Natl Bur Stand Part A Phys Chem 70:421–433. dx.doi.org/10.6028/jres.070A.035
Morton M, Fetters LJ (1975) Anionic polymerization of vinyl monomers. Rubber Chem Technol 48:359–409. doi:10.5254/1.3547458
Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M (2000) Anionic polymerization: high vacuum techniques. J Polym Sci Part A Polym Chem 38:3211–3234
Uhrig D, Mays JW (2005) Experimental techniques in high-vacuum anionic polymerization. J Polym Sci Part A Polym Chem 43:6179–6222. doi:10.1002/pola.21016
Hadjichristidis N, Fetters LJ (1980) Start-branched polymers 4. Synthesis of 18-arm polyisoprenes. Macromolecules 13:191–194
Aliferis T, Iatrou H, Hadjichristidis N (2005) Well-defined linear multiblock and branched polypeptides by linking chemistry. J Polym Sci Part A Polym Chem 43:4670–4673. doi:10.1002/pola.20926
Hadjichristidis N, Pispas S, Pitsikalis M, Iatrou H, Vlahos C (1999) Asymmetric star polymers: synthesis and properties. Adv Polym Sci 142:71–127
Paraskeva S, Hadjichristidis N (2000) Synthesis of an exact graft copolymer of isoprene and styrene. J Polym Sci Part A Polym Chem 38:931–935
Lee C, Gido SP, Poulos Y, Hadjichristidisi N, Tan NB, Trevino SF, Mays JW (1997) H-shaped double graft copolymers: effect of molecular architecture on morphology. J Chem Phys 107:6460–6469
Fragouli PG, Iatrou H, Hadjichristidis N (2004) Synthesis and characterization of linear tetrablock quarterpolymers of styrene, isoprene, dimethylsiloxane, and 2-vinylpyridine. J Polym Sci Part A Polym Chem 42:514–519. doi:10.1002/pola.10856
Ratkanthwar KR, Hadjichristidis N, Pudukulathan Z (2013) Synthesis and characterization of well-defined regular star polyisoprenes with 3, 4, 6 and 8 arms. Chem J 03:1–11
Ratkanthwar K, Hadjichristidis N, Lee S, Chang T, Pudukulathan Z, Vlassopoulos D (2013) Synthesis and characterization of an exact comb polyisoprene with three branches having the middle branch twice the molecular weight of the other two identical external branches. Polym Chem 4:5645. doi:10.1039/c3py00848g
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
List of Abbreviations and Symbols
List of Abbreviations and Symbols
- 2VP:
-
2-Vinyl pyridine
- Bd:
-
1,3-Butadiene
- CaH2 :
-
Calcium hydride
- D3:
-
Hexamethylcyclotrisiloxane
- DBMg:
-
Dibutylmagnesium
- DCMSDPE:
-
4-(Dichloromethylsilyl)diphenylethylene
- DLI:
-
Dilithium initiator
- DPE:
-
1,1-Diphenylethylene
- EO:
-
Ethylene oxide
- GPC:
-
Gel permeation chromatography
- HVTs:
-
High Vacuum Techniques
- LN:
-
Liquid nitrogen
- M n :
-
Number-average molecular weight
- n-BuLi:
-
n-Butyl Lithium
- P2VP:
-
Poly(2-vinylpyridine)
- PBd:
-
Polybutadiene
- PDI:
-
Polydispersity Index
- PDMS:
-
Polydimethylsiloxane
- PEB:
-
1,3-bis(1-Phenylethenyl)benzene
- PI:
-
Polyisoprene
- PSLi:
-
Polystyryllithium
- SEC:
-
Size exclusion chromatography
- sec-BuLi:
-
sec-Butyl Lithium
- TEA:
-
Triethylamine
- THF:
-
Tetrahydrofuran
- TOA:
-
Trioctyl aluminum
Rights and permissions
Copyright information
© 2015 Springer Japan
About this chapter
Cite this chapter
Ratkanthwar, K., Hadjichristidis, N., Mays, J. (2015). High Vacuum Techniques for Anionic Polymerization. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_2
Download citation
DOI: https://doi.org/10.1007/978-4-431-54186-8_2
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-54185-1
Online ISBN: 978-4-431-54186-8
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)