Skip to main content

High Vacuum Techniques for Anionic Polymerization

  • Chapter
Anionic Polymerization

Abstract

Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quirk RP, Hsieh H (1996) Anionic polymerization – principles and practical application. Marcel Dekker, Inc, New York

    Google Scholar 

  2. Szwarc M (1956) “Living” polymers. Nature 178:1168–1169. doi:10.1038/1781168a0

    Article  CAS  Google Scholar 

  3. Szwarc M, Levy M, Milkovich R (1956) Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J Am Chem Soc 78:2656–2657. doi:10.1021/ja01592a101

    Article  CAS  Google Scholar 

  4. Szwarc M (1968) Carbanions, living polymers, and electron transfer processes. Interscience, New York

    Google Scholar 

  5. Quirk RP, Lee B (1992) Experimental criteria for living polymerizations. Polym Int 27:359–367. doi:10.1002/pi.4990270412

    Article  CAS  Google Scholar 

  6. Penczek S, Kubisa P (1989) In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering, Supplemental volume. Wiley-Interscience, New York, p 380

    Google Scholar 

  7. Flory PJ (1940) Molecular size distribution in ethylene oxide polymers. J Am Chem Soc 62:1561–1565. doi:10.1021/ja01863a066

    Article  CAS  Google Scholar 

  8. Lee W, Lee H, Cha J, Chang T, Hanley KJ, Lodge TP (2000) Molecular weight distribution of polystyrene made by anionic polymerization. Macromolecules 33:5111–5115. doi:10.1021/ma992121t

    Article  CAS  Google Scholar 

  9. Iatrou H, Mays JW, Hadjichristidis N (1998) Regular comb polystyrenes and graft polyisoprene/polystyrene copolymers with double branches (“centipedes”). Quality of (1,3-pheynylene)bis(3-methyl-1-phenylpentylidene)dilithum initiator in the presence of polar additives. Macromolecules 31:6697–6701

    Article  CAS  Google Scholar 

  10. Fetters LJ (1966) Procedures for homogeneous anionic polymerization. J Res Natl Bur Stand Part A Phys Chem 70:421–433. dx.doi.org/10.6028/jres.070A.035

  11. Morton M, Fetters LJ (1975) Anionic polymerization of vinyl monomers. Rubber Chem Technol 48:359–409. doi:10.5254/1.3547458

    Article  CAS  Google Scholar 

  12. Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M (2000) Anionic polymerization: high vacuum techniques. J Polym Sci Part A Polym Chem 38:3211–3234

    Article  CAS  Google Scholar 

  13. Uhrig D, Mays JW (2005) Experimental techniques in high-vacuum anionic polymerization. J Polym Sci Part A Polym Chem 43:6179–6222. doi:10.1002/pola.21016

    Article  CAS  Google Scholar 

  14. Hadjichristidis N, Fetters LJ (1980) Start-branched polymers 4. Synthesis of 18-arm polyisoprenes. Macromolecules 13:191–194

    Article  CAS  Google Scholar 

  15. Aliferis T, Iatrou H, Hadjichristidis N (2005) Well-defined linear multiblock and branched polypeptides by linking chemistry. J Polym Sci Part A Polym Chem 43:4670–4673. doi:10.1002/pola.20926

    Article  CAS  Google Scholar 

  16. Hadjichristidis N, Pispas S, Pitsikalis M, Iatrou H, Vlahos C (1999) Asymmetric star polymers: synthesis and properties. Adv Polym Sci 142:71–127

    Article  CAS  Google Scholar 

  17. Paraskeva S, Hadjichristidis N (2000) Synthesis of an exact graft copolymer of isoprene and styrene. J Polym Sci Part A Polym Chem 38:931–935

    Article  CAS  Google Scholar 

  18. Lee C, Gido SP, Poulos Y, Hadjichristidisi N, Tan NB, Trevino SF, Mays JW (1997) H-shaped double graft copolymers: effect of molecular architecture on morphology. J Chem Phys 107:6460–6469

    CAS  Google Scholar 

  19. Fragouli PG, Iatrou H, Hadjichristidis N (2004) Synthesis and characterization of linear tetrablock quarterpolymers of styrene, isoprene, dimethylsiloxane, and 2-vinylpyridine. J Polym Sci Part A Polym Chem 42:514–519. doi:10.1002/pola.10856

    Article  CAS  Google Scholar 

  20. Ratkanthwar KR, Hadjichristidis N, Pudukulathan Z (2013) Synthesis and characterization of well-defined regular star polyisoprenes with 3, 4, 6 and 8 arms. Chem J 03:1–11

    Google Scholar 

  21. Ratkanthwar K, Hadjichristidis N, Lee S, Chang T, Pudukulathan Z, Vlassopoulos D (2013) Synthesis and characterization of an exact comb polyisoprene with three branches having the middle branch twice the molecular weight of the other two identical external branches. Polym Chem 4:5645. doi:10.1039/c3py00848g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Hadjichristidis .

Editor information

Editors and Affiliations

List of Abbreviations and Symbols

List of Abbreviations and Symbols

2VP:

2-Vinyl pyridine

Bd:

1,3-Butadiene

CaH2 :

Calcium hydride

D3:

Hexamethylcyclotrisiloxane

DBMg:

Dibutylmagnesium

DCMSDPE:

4-(Dichloromethylsilyl)diphenylethylene

DLI:

Dilithium initiator

DPE:

1,1-Diphenylethylene

EO:

Ethylene oxide

GPC:

Gel permeation chromatography

HVTs:

High Vacuum Techniques

LN:

Liquid nitrogen

M n :

Number-average molecular weight

n-BuLi:

n-Butyl Lithium

P2VP:

Poly(2-vinylpyridine)

PBd:

Polybutadiene

PDI:

Polydispersity Index

PDMS:

Polydimethylsiloxane

PEB:

1,3-bis(1-Phenylethenyl)benzene

PI:

Polyisoprene

PSLi:

Polystyryllithium

SEC:

Size exclusion chromatography

sec-BuLi:

sec-Butyl Lithium

TEA:

Triethylamine

THF:

Tetrahydrofuran

TOA:

Trioctyl aluminum

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ratkanthwar, K., Hadjichristidis, N., Mays, J. (2015). High Vacuum Techniques for Anionic Polymerization. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_2

Download citation

Publish with us

Policies and ethics