Skip to main content

Block Copolymers as Antifouling and Fouling Resistant Coatings

  • Chapter
Anionic Polymerization

Abstract

Biofouling is a natural phenomenon in which biomolecules, cells, and more complex organisms attach themselves to surfaces. It is a problem affecting ship surfaces, water filtering systems, and piping systems that diminishes efficiency, possibly rendering a device inoperative and requires routine maintenance and even repair. Previously in marine applications, metal-based coatings have been used for their antifouling properties; however, these coatings are biocides and an increasing number of regulations have been passed to limit their use due to their environmental toxicity. Block copolymer coatings have been shown to have antifouling and fouling release properties and are being pursued as a nontoxic alternative. This chapter will present an in-depth exploration of different polymer architectures, fouling resistance structures, and strategies that have been employed to prevent biofouling including hyperbranched polymers, zwitterionic structures, amphiphilic polymers, and more. We will also discuss different methods used to test a coating’s ability for antifouling and fouling release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haras D (2006) Biofilms et Altérations des Matériaux: de L’analyse du Phénomène aux Stratégies de Prévention. Mater Tech 93:s.27

    Google Scholar 

  2. Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112:4347–4390

    Article  CAS  Google Scholar 

  3. Callow JA, Callow ME (2006) Biofilms. In: Fusetani N, Clare AS (eds) Antifouling compounds. Progress in molecular and subcellular biology, sub-series marine molecular biotechnology. Springer, Berlin/Heidelberg/New York, pp 141–169

    Google Scholar 

  4. Rosenhahn A, Schilp S, Kreuzer HJ, Grunze M (2010) The role of “inert” surface chemistry in marine biofouling prevention. Phys Chem Chem Phys 12:4275

    Article  CAS  Google Scholar 

  5. Callow ME, Callow JA (2002) Marine biofouling: a sticky problem. Biologist 49(1):10–14

    Google Scholar 

  6. Lack DA, Corbett JJ, Onasch T, Lerner B, Massoli PK, Bates TS, Covert DS, Coffman D, Sierau B, Herndon S, Allan J, Baynard T, Lovejoy E, Ravishankara AR, Williams E (2009) Particulate emissions from commercial shipping: chemical, physical, and optical properties. J Geophys Res 114:D00F04

    Article  CAS  Google Scholar 

  7. Corbett JJ, Koehler HW (2003) Updated emissions from ocean shipping. J Geophys Res 108:4650

    Article  CAS  Google Scholar 

  8. Werner C, Maitz CF, Sperling C (2007) Current strategies towards hemocompatible coatings. J Mater Chem 17:3376–3384

    Article  CAS  Google Scholar 

  9. Woods Hole Oceanographic Institution (1952) Marine fouling and its prevention. U.S. Naval Institute, Annapolis

    Google Scholar 

  10. Alzieu CL, Sanjuan J, Deltreil JP, Borel M (1986) Tin contamination in Arcachan Bay effect on oyster shell anomalies. Mar Pollut Bull 17:494–498

    Article  CAS  Google Scholar 

  11. Alzieu C (2000) Environmental impact of TBT: the French Experience. Sci Total Environ 258:99–102

    Article  CAS  Google Scholar 

  12. Ruiz JM, Bachelet G, Caumette P, Donard OFX (1996) Three decades of tributyltin in the coastal environment with emphasis on Arcachon Bay, France. Environ Pollut 93:195–203

    Article  CAS  Google Scholar 

  13. Pereira M, Ankjaergaard C (2009) Advances in marine antifouling coatings and technologies. In: Legislation affecting antifouling products. Woodshead Publishing, Cambridge, UK, p 240

    Google Scholar 

  14. Ytreberg E, Karlsson J, Eklund B (2010) Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci Total Environ 408:2459–2466

    Article  CAS  Google Scholar 

  15. Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surface. J Mater Chem 18:3405–3414

    Article  CAS  Google Scholar 

  16. Beigbeder A, Degee P, Conlan SL, Mutton RJ, Clare AS, Pettitt ME, Callow ME, Callow JA, Dubois P (2008) Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling 24:291–302

    Article  Google Scholar 

  17. Wynne KJ, Swain GW, Fox RB, Bullock S, Ulik J (2000) Two silicone nontoxic fouling coating hydrosilation cured PDMS and CaCO3 filled, ethoxysiloxane cured RTV11. Biofouling 16:277–288

    Article  CAS  Google Scholar 

  18. Brady RF (2000) ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications. Polym Paint Colour J 190:18–20

    CAS  Google Scholar 

  19. Wendt DE, Kowalke GL, Kim J, Singer IL (2006) Factors that influence elastomeric coating performance: the effect of coating thickness on basal plate morphology, growth and critical removal stress of the barnacle balanus amphitrite. Biofouling 22:1–9

    Article  CAS  Google Scholar 

  20. Kim J, Chisholm BJ, Bahr J (2007) Adhesion study of silicone coatings: the interaction of thickness, modulus and shear rate on adhesion force. Biofouling 23:113–120

    Article  CAS  Google Scholar 

  21. Kim J, Nyren-Erikson E, Stafslien S, Daniels J, Bahr J, Chisholm BJ (2008) Release characteristics of reattached barnacles to non-toxic silicone coatings. Biofouling 24:313–319

    Article  CAS  Google Scholar 

  22. Chaudhury MK, Finlay JA, JChung JY, Callow ME, Callow JA (2005) The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva Linza (Syn. Enteromorpha Linza) from poly(dimethylsiloxane) (PDMS) model networks. Biofouling 21:41–48

    Article  CAS  Google Scholar 

  23. Schultz MP, Finlay JA, Callow ME, Callow JA (2003) Three models to relate detachment of low form fouling at laboratory and ship scale. Biofouling 19:17–26

    Article  Google Scholar 

  24. Holland R, Dugdale TM, Wetherbee R, Brennan AB, Finlay JA, Callow JA, Callow ME (2004) Adhesion and motility of fouling diatoms on a silicone elastomer. Biofouling 20:323–329

    Article  CAS  Google Scholar 

  25. Andrade JD, King RN, Gregonis DE, Coleman DL (1979) Surface characterization of poly(hydroxyethyl methacrylate) and related polymers. I. Contact angle methods in water. J Polym Sci Polym Symp 66:313–336

    Article  CAS  Google Scholar 

  26. Ikada Y (2001) Water, ch. 11. In: Morra M (ed) Biomaterials surface science, 1st edn. Wiley, New York, pp 291–306

    Google Scholar 

  27. Schilp S, Kueller A, Rosenhahn A, Grunze M, Pettitt ME, Callow ME, Callow JA (2007) Settlement and adhesion of algal cells to hexa(ethylene glycol)-containing self-assembled monolayers with systematically changed wetting properties. Biointerphases 2:143–150

    Article  CAS  Google Scholar 

  28. Youngblood JP, Andruzzi L, Ober CK, Hexemer A, Kramer EJ, Callow JA, Finlay JA, Callow ME (2003) Coatings based on side-chain ether-linked poly (ethylene glycol) and fluorocarbon polymers for the control of marine biofouling. Biofouling 19:91–98

    Article  CAS  Google Scholar 

  29. Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA (2006) Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva. Biomacromolecules 7:1449–1462

    Article  CAS  Google Scholar 

  30. Statz A, Finlay JA, Dalsin J, Callow ME, Callow JA, Messersmith PB (2006) Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Biofouling 22:391–399

    Article  CAS  Google Scholar 

  31. Callow ME, Callow JA, Pickett-Heaps JD, Wetherbee R (1997) Primary adhesion of enteromorpha (chlorophyta, Ulvales) propagules: quantitative settlement studies and video microscopy. J Phycol 33:938–947

    Article  Google Scholar 

  32. Schultz MP, Finlay JA, Callow ME, Callow JA (2000) A turbulent channel flow apparatus for the determination of the adhesion strength of microfouling organisms. Biofouling 15:243–251

    Article  Google Scholar 

  33. Grozea CM, Gunari N, Finlay JA, Grozea D, Callow ME, Callow JA, Lu ZH, Walker GC (2009) Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of Zoospores of the green alga Ulva. Biomacromolecules 10:1004–1012

    Article  CAS  Google Scholar 

  34. Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL (2005) The antifouling and fouling-release performance of hyperbranched fluoropolymer (HBFP) − poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir 21:3044–3053

    Article  CAS  Google Scholar 

  35. Hu Z, Finlay JA, Chen L, Betts DE, Hillmyer MA, Callow ME, Callow JA, DeSimone JM (2009) Photochemically cross-linked perfluoropolyether-based elastomers: synthesis, physical characterization, and biofouling evaluation. Macromolecules 42:6999–7007

    Article  CAS  Google Scholar 

  36. Dalsin JL, Hu BH, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:4253–4258

    Article  CAS  Google Scholar 

  37. Gudipati CS, Greenlief CM, Johnson JA, Prayongpan P, Wooley KL (2004) Hyperbranched fluoropolymer and linear poly(ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: an insight into the surface compositions, topographies, and morphologies. J Poly Sci Part A Polym Chem 42:6193–6208

    Article  CAS  Google Scholar 

  38. Imbesi PM, Raymond JE, Tucker BS, Wooley KL (2012) Thiol-ene ‘click’ networks from amphiphilic fluoropolymers: full synthesis and characterization of a benchmark anti-biofouling surface. J Mater Chem 22:19462

    Article  CAS  Google Scholar 

  39. Brady RF Jr, Singer IL (2000) Mechanical factors favoring release from fouling release coatings. Biofouling 15:73–81

    Article  CAS  Google Scholar 

  40. Brady RF, Aronson CL (2003) Elastomeric fluorinated polyurethane coatings for nontoxic fouling control. Biofouling 19:59–62

    Article  CAS  Google Scholar 

  41. Wang J, Mao G, Ober CK, Kramer EJ (1997) Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: synthesis, liquid crystalline structure, and critical surface tension. Macromolecules 30:1906–1914

    Article  CAS  Google Scholar 

  42. Ober CK, Wang JG, Mao GP (1997) Order within order: studies of semifluorinated block copolymers. Macromol Symp 18:701–706

    Article  Google Scholar 

  43. Osuji CO, Chen JT, Mao G, Ober CK, Thomas EL (2000) Understanding and controlling the morphology of styrene–isoprene side-group liquid crystalline diblock copolymers. Polymer 41:8897–8907

    Article  CAS  Google Scholar 

  44. Mao G, Wang J, Clingman SR, Ober CK, Thomas EL, Chen JT (1997) Molecular design, synthesis, and characterization of liquid crystal − coil diblock copolymers with azobenzene side groups. Macromolecules 30:2556–2567

    Article  CAS  Google Scholar 

  45. Genzer J, Sivaniah E, Kramer EJ, Wang J, Korner H, Xiang M, Char K, Ober CK, DeKoven BM, Bubeck RA, Chaudhury MK, Sambasivan S, Fischer DA (2000) The orientation of semifluorinated alkanes attached to polymers at the surface of polymer films. Macromolecules 33:1882–1887

    Article  CAS  Google Scholar 

  46. Xiang M, Li X, Ober CK, Char K, Genzer J, Sivaniah E, Kramer EJ, Fischer DA (2000) Surface stability in liquid-crystalline block copolymers with semifluorinated monodendron side groups. Macromolecules 33:6106–6119

    Article  CAS  Google Scholar 

  47. Hexemer A, Sivaniah E, Kramer EJ, Xiang M, Li X, Ober CK (2004) Managing polymer surface structure using surface active block copolymers in block copolymer mixtures. J Poly Sci Part B Polym Phys 42:411–420

    Article  CAS  Google Scholar 

  48. Weinman CJ, Finlay JA, Park D, Paik MY, Krishnan S, Sundaram HS, Dimitriou M, Sohn KE, Callow ME, Callow JA, Handlin DL, Willis CL, Kramer EJ, Ober CK (2009) ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications. Langmuir 25:12266–12274

    Article  CAS  Google Scholar 

  49. Cho Y, Sundaram HS, Weinman CJ, Paik MY, Dimitriou MD, Finlay JA, Callow ME, Callow JA, Kramer EJ, Ober CK (2011) Triblock copolymers with grafted fluorine-free, amphiphilic, non-ionic side chains for antifouling and fouling-release applications. Macromolecules 44:4783–4792

    Article  CAS  Google Scholar 

  50. Dimitriou MD, Zhou Z, Yoo H-S, Killops KL, Finlay JA, Cone G, Sundaram HS, Lynd NA, Barteau KP, Campos LM, Fischer DA, Callow ME, Callow JA, Ober CK, Hawker CJ, Kramer EJ (2011) A general approach to controlling the surface composition of poly(ethylene oxide)-based block copolymers for antifouling coatings. Langmuir 27:13762–13772

    Article  CAS  Google Scholar 

  51. Koh JK, Kim YW, Ahn SH, Min BR, Kim JH (2010) Antifouling poly(vinylidene fluoride) ultrafiltration membranes containing amphiphilic comb polymer additive. J Poly Sci Part B Polym Phys 48:183–189

    Article  CAS  Google Scholar 

  52. Bodkhea RB, Stafslien SJ, Cilz N, Daniels J, Thompson SEM, Callow ME, Callow JA, Webster DC (2012) Polyurethanes with amphiphilic surfaces made using telechelic functional PDMS having orthogonal acid functional groups. Prog Org Coat 75:38–48

    Article  CAS  Google Scholar 

  53. Martinelli E, Suffredini M, Galli G, Glisenti A, Pettitt ME, Callow ME, Callow JA, Williams D, Lyall G (2011) Amphiphilic block copolymer/poly(dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release. Biofouling 27:529–541

    Article  CAS  Google Scholar 

  54. Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J Am Chem Soc 1993(115):10714–10721

    Article  Google Scholar 

  55. Ma H, Hyun J, Stiller P, Chilkoti A (2004) “Non-fouling” oligo(ethylene glycol)- functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater 16:338–341

    Article  CAS  Google Scholar 

  56. Yarbrough JC, Rolland JP, DeSimone JM, Callow ME, Finlay JA, Callow JA (2006) Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers. Macromolecules 39:2521–2528

    Article  CAS  Google Scholar 

  57. Park D, Weinman CJ, Finlay JA, Fletcher BA, Paik MY, Sundaram HS, Dimitriou MD, Sohn KE, Callow ME, Callow JA, Handlin DL, Willis CL, Fischer DA, Kramer EJ, Ober CK (2010) Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties. Langmuir 26:9772–9781

    Article  CAS  Google Scholar 

  58. Cho Y, Sundaram HS, Finlay JA, Dimitriou MD, Callow ME, Callow JA, Kramer EJ, Ober CK (2012) Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release. Biomacromolecules 13:1864–1874

    Article  CAS  Google Scholar 

  59. Sundaram HS, Cho YJ, Dimitriou MD, Weinman CJ, Finlay JA, Cone G, Callow ME, Callow JA, Kramer EJ, Ober CK (2011) Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. Biofouling 27:589–601

    Article  CAS  Google Scholar 

  60. Martinelli E, Sarvothaman MK, Alderighi M, Galli G, Mielczarski E, Mielczarski JA (2012) PDMS network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. I. Chemistry and stability of the film surface. J Poly Sci Part A Polym Chem 50:2677–2686

    Article  CAS  Google Scholar 

  61. Martinelli E, Sarvothaman MK, Galli G, Pettitt ME, Callow ME, Callow JA, Conlan SL, Clare AS, Sugiharto AB, Davies C, Williams D (2012) Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials. Biofouling 28:571–582

    Article  CAS  Google Scholar 

  62. Krishnan S, Ayothi R, Hexemer A, Finlay JA, Sohn KE, Perry R, Ober CK, Kramer EJ, Callow ME, Callow JA, Fischer DA (2006) Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. Langmuir 22:5075–5086

    Article  CAS  Google Scholar 

  63. Martinelli E, Agostini S, Galli G, Chiellini E, Glisenti A, Pettiitt ME, Callow ME, Callow JA, Graf K, Bartels FW (2008) Nanostructured films of amphiphilic fluorinated block copolymers for fouling release application. Langmuir 24:13138–13147

    Article  CAS  Google Scholar 

  64. Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany JF, Hansen KJ, Jones OPD, Helle E, Nyman M, Giesy JP (2001) Accumulation of perfluorooctane sulfonate in marine mammals. Environ Sci Technol 35:1593–1598

    Article  CAS  Google Scholar 

  65. Martin JW, Mabury SA, Solomon KR, Muir DCG (2003) Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (oncorhynchus mykiss). Environ Toxicol Chem 22:196–204

    Article  CAS  Google Scholar 

  66. Olsen GW, Huang HY, Helzlsouer KJ, Hansen KJ, Butenhoff JL, Mandel JH (2005) Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood. Environ Health Perspect 113:539–545

    Article  CAS  Google Scholar 

  67. Mielczarski JA, Mielczarski E, Galli G, Morelli A, Martinelli E, Chiellini E (2010) The surface-segregated nanostructure of fluorinated copolymer − poly(dimethylsiloxane) blend films. Langmuir 26:2871–2876

    Article  CAS  Google Scholar 

  68. Marabotti I, Morelli A, Orsini LM, Martinelli E, Galli G, Chiellini E, Lien EM, Pettitt ME, Callow ME, Callow JA, Conlan SL, Mutton RL, Clare AS, Kocijan A, Donik C, Jenko M (2009) Fluorinated/siloxane copolymer blends for fouling release: chemical characterisation and biological evaluation with algae and barnacles. Biofouling 25:481–493

    Article  CAS  Google Scholar 

  69. Ikeda T, Lee B, Yamaguchi H, Tazuke S (1990) Time-resolved fluorescence anisotropy studies on the interaction of biologically active polycations with phospholipid membranes. Biochem Biophys Acta Biomembr 1021:56–62

    Article  CAS  Google Scholar 

  70. Ikeda T, Hirayama H, Yamaguchi H, Tazuke S, Watanabe M (1986) Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Anitmicrob Agents Chemother 30:132–136

    Article  CAS  Google Scholar 

  71. Ikeda T, Tazuke S, Suzuki Y (1984) Biologically active polycations, 4. Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Makromol Chem 185:869–876

    Article  CAS  Google Scholar 

  72. Ikeda T, Yamaguchi H, Tazuke S (1990) Phase separation in phospholipid bilayers induced by biologically active polycations. Biochim Biophys Acta Biomembr 1026:105–112

    Article  CAS  Google Scholar 

  73. Ikeda T, Yamaguchi H, Tazuke S (1990) Molecular weight dependence of antibacterial activity in cationic disinfectants. J Bioactive Compatible Polym 5:31–41

    Article  CAS  Google Scholar 

  74. Chen CZ, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL (2000) Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure − activity studies. Biomacromolecules 1:473–480

    Article  CAS  Google Scholar 

  75. Sauvet G, Fortuniak W, Kazmierski K, Chojnowski J (2003) Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci Part A Polym Chem 41:2939–2948

    Article  CAS  Google Scholar 

  76. Thome J, Hollander A, Jaeger W, Trick I, Oehr C (2003) Ultrathin antibacterial polyammonium coatings on polymer surfaces. Surf Coat Technol 174–175:584–587

    Article  CAS  Google Scholar 

  77. Gelman MA, Weisblum B, Lynn DM, Gellman SH (2004) Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org Lett 6:557–560

    Article  CAS  Google Scholar 

  78. Ilker MF, Nusslein K, Tew GN, Coughlin EB (2004) Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc 126:15870–15875

    Article  CAS  Google Scholar 

  79. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882

    Article  CAS  Google Scholar 

  80. Waschinski CJ, Tiller JC (2005) Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules 6:235–243

    Article  CAS  Google Scholar 

  81. Kawabata N, Nishiguchi M (1988) Antibacterial activity of soluble pyridinium-type polymers. Appl Environ Microbiol 54:2532–2535

    CAS  Google Scholar 

  82. Li G, Shen J, Zhu Y (1998) Study of pyridinium-type functional polymers. II. Antibacterial activity of soluble pyridinium-type polymers. J Appl Polym Sci 67:1761–1768

    Article  CAS  Google Scholar 

  83. Li G, Shen J (2000) A study of pyridinium-type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium-type polymers. J Appl Polym Sci 78:676–684

    Article  CAS  Google Scholar 

  84. Tiller JC, Liao C-J, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A 98:5981–5985

    Article  CAS  Google Scholar 

  85. Grapski JA, Cooper SL (2001) Synthesis and characterization of non-leaching biocidal polyurethanes. Biomaterials 22:2239–2246

    Article  CAS  Google Scholar 

  86. Cen L, Neoh KG, Kang ET (2003) Surface functionalization technique for conferring antibacterial properties to polymeric and cellulosic surfaces. Langmuir 19:10295–10303

    Article  CAS  Google Scholar 

  87. Park ES, Kim HS, Kim MN, Yoon JS (2004) Antibacterial activities of polystyrene-block-poly(4-vinyl pyridine) and poly(styrene-random-4-vinyl pyridine). Eur Polym J 40:2819–2822

    Article  CAS  Google Scholar 

  88. Kanazawa A, Ikeda T, Endo T (1993) Novel polycationic biocides: synthesis and antibacterial activity of polymeric phosphonium salts. J Polym Sci Part A Polym Chem 31:335–343

    Article  CAS  Google Scholar 

  89. Kanazawa A, Ikeda T, Endo T (1993) Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. J Polym Sci Part A Polym Chem 31:1467–1472

    Article  CAS  Google Scholar 

  90. Kanazawa A, Ikeda T, Endo T (1993) Polymeric phosphonium salts as a novel class of cationic biocides. IV. Synthesis and antibacterial activity of polymers with phosphonium salts in the main chain. J Polym Sci Part A Polym Chem 31:3031–3038

    Article  CAS  Google Scholar 

  91. Kanazawa A, Ikeda T, Endo T (1994) Polymeric phosphonium salts as a novel class of cationic biocides. VII. Synthesis and antibacterial activity of polymeric phosphonium salts and their model compounds containing long alkyl chains. J Appl Polym Sci 53:1237–1244

    Article  CAS  Google Scholar 

  92. Kanazawa A, Ikeda T, Endo T (1994) Polymeric phosphonium salts as a novel class of cationic biocides. VIII. Synergistic effect on antibacterial activity of polymeric phosphonium and ammonium salts. J Appl Polym Sci 53:1245–1249

    Article  CAS  Google Scholar 

  93. Kenawy E-R, Abdel-Hay FI, El-Shanshoury AE-RR, El-Newehy M (2002) Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts H. J Polym Sci Part A Polym Chem 40:2384–2393

    Article  CAS  Google Scholar 

  94. Popa A, Davidescu CM, Trif R, Ilia Gh, Iliescu S, Dehelean Gh (2003) Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styene-divinylbenzene copolymers. React Funct Polym 55:151–158

    Google Scholar 

  95. Kanazawa A, Ikeda T, Endo T (1993) Antibacterial activity of polymeric sulfonium salts. J Polym Sci Part A Polym Chem 31:2873–2876

    Article  CAS  Google Scholar 

  96. Nonaka T, Noda E, Kurihara S (2000) Graft copolymerization of vinyl monomers bearing positive charges or episulfide groups onto Loofah fibers and their antibacterial activity. J Appl Polym Sci 77:1077–1086

    Article  CAS  Google Scholar 

  97. Li GJ, Shen JR, Zhu YL (2000) A study of pyridinium-type functional polymers. III. Preparation and characterization of insoluble pyridinium-type polymers. J Appl Polym Sci 78:668–675

    Article  CAS  Google Scholar 

  98. Tashiro T (2001) Antibacterial and bacterium adsorbing macromolecules. Macromol Mater Eng 286:63–87

    Article  CAS  Google Scholar 

  99. Dizman B, Elasri MO, Mathias LJ (2006) Synthesis and characterization of antibacterial and temperature responsive methacrylamide polymers. Macromolecules 39:5738–5746

    Article  CAS  Google Scholar 

  100. Huang JY, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K (2007) Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules 8:1396–1399

    Article  CAS  Google Scholar 

  101. Kenawy ERJ (2001) Biologically active polymers. IV. Synthesis and antimicrobial activity of polymers containing 8-hydroxyquinoline moiety. J Appl Polym Sci 82:1364–1374

    Article  CAS  Google Scholar 

  102. Krishnan S, Ward RJ, Hexemer A, Sohn KE, Lee KL, Angert ER, Fischer DA, Kramer EJ, Ober CK (2006) Surfaces of fluorinated pyridinium block copolymers with enhanced antibacterial activity. Langmuir 22:11255–11266

    Article  CAS  Google Scholar 

  103. Kurt P, Wood L, Ohman DE, Wynne KJ (2007) Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir 23:4719–4723

    Article  CAS  Google Scholar 

  104. Cheng ZP, Zhu XL, Shi ZL, Neoh KG, Kang ET (2005) Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Ind Eng Chem Res 44:7098–7104

    Article  CAS  Google Scholar 

  105. Park D, Wang J, Klibanov AM (2006) One-step, painting-like coating procedures to make surfaces highly and permanently bactericidal. Biotechnol Prog 22:584–589

    Article  CAS  Google Scholar 

  106. Kawabata N, Fujita I, Inoue T (1996) Removal of virus from water by filtration using microporous membranes made of poly(N-benzyl-4-vinylpyridinium chloride). J Appl Polym Sci 60:911–917

    Article  CAS  Google Scholar 

  107. Mieszkin S, Martin-Tanchereau P, Callow ME, Callow JA (2012) Effect of bacterial biofilms formed on fouling-release coatings from natural seawater and cobetia marina, on the adhesion of two marine algae. Biofouling 28:953–968

    Article  CAS  Google Scholar 

  108. Mieszkin S, Callow ME, Callow JA (2013) Interactions between microbial biofilms and marine fouling algae: a mini review. Biofouling 29:1097–1113

    Article  CAS  Google Scholar 

  109. Ivanov I, Vemparala S, Pophristic V, Kuroda K, DeGrado WF, McCammon JA, Klein ML (2006) Characterization of nonbiological antimicrobial polymers in aqueous solution and at water − lipid interfaces from all-atom molecular dynamics. J Am Chem Soc 128:1778–1779

    Article  CAS  Google Scholar 

  110. Lin J, Qiu S, Lewis K, Klibanov AM (2003) Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng 83:168–172

    Article  CAS  Google Scholar 

  111. Milovic NM, Wang J, Lewis K, Klibanov AM (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng 90:715–722

    Article  CAS  Google Scholar 

  112. Kugler R, Bouloussa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–1348

    Article  CAS  Google Scholar 

  113. Park D, Finlay JA, Ward RJ, Weinman DJ, Krishnan S, Paik M, Sohn KE, Callow ME, Callow JA, Handlin DL, Willis CL, Fischer DA, Angert ER, Kramer EJ, Ober CK (2010) Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms. Appl Mater Interfaces 2:703–711

    Article  CAS  Google Scholar 

  114. Zhou Z (2013) Adjustment of surface chemical and physical properties with functionalized polymers to control cell adhesion. PhD dissertation, Cornell University, Ithaca

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank their collaborators of many years, Prof. Ed Kramer (UCSB), Profs. Jim and Maureen Callow (U. Birmingham), Dr. Dan Fischer (NIST and Brookhaven National Lab), Dr. Cherno Jave (Brookhaven National Lab), Prof. Gilbert Walker (Toronto), Prof. Craig Hawker (UCSB), Dr. John Finley (Newcastle), and Prof. Giancarlo Galli (Pisa). We also thank the previous graduate students and postdoctoral fellows whose research is referred to in this work. And we would finally like to thank the Office of Naval Research for research funding in this exciting area and other members of the antifouling team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Ober .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

AFM:

Atomic force microscopy

AGE:

Allyl glycidyl ether

ATRP:

Atom-transfer radical-polymerization

BSA:

Bovine serum albumin

CTFE:

Polychlorotrifluoroethylene

Da:

Daltons

DMAPA:

3-(Dimethylamino)-1-propylamine

EPS:

Extracellular polymeric substances

GPS:

3-(Glycidoxypropyl)trimethoxy silane

HBFP:

Hyperbranched fluoropolymer

L-DOPA:

L-3,4-dihydroxyphenylalanine

MA:

Maleic anhydride

mCPBA:

m-Chloroperoxybenzoic acid

NEXAFS:

Near edge X-ray absorption fine structure

P2VP:

Poly(2-vinyl pyridine)

P4VP:

Poly(4-vinylpyridine)

Pa:

Pascals

PDMS:

Poly(dimethylsiloxane)

PEG:

Poly(ethylene glycol)

PMMA:

Poly(methyl methacrylate)

PS:

Polystyrene

PS-b-P(E/B)-b-PI:

Polystyrene-b-poly(ethylene-stat-butylene)-b-polyisoprene

PTFE:

Polytetrafluoroethylene

SABC:

Surface activated block copolymers

SEBS:

Polystyrene-b-poly(ethylene-stat-butylene)-b-polystyrene

SFM:

Scanning force microscopy

TBT:

Tributyl tin

UV:

Ultraviolet

XPS:

X-ray photoelectron spectroscopy

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Calabrese, D., Wenning, B., Ober, C.K. (2015). Block Copolymers as Antifouling and Fouling Resistant Coatings. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_20

Download citation

Publish with us

Policies and ethics