Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this thesis, we construct a general theory of thermodynamics of information processing. The background of this research is the recently developed field of nonequilibrium statistical mechanics and quantum and classical information theories. These theories are closely related to the modern technologies used to manipulate and observe small systems; for example, macromolecules and colloidal particles in the classical regime, and quantum-optical systems and quantum dots in the quantum regime. First, we generalize the second law of thermodynamics to the situations in which small thermodynamic systems are subject to quantum feedback control. Second, we generalize the second law of thermodynamics to the measurement and information erasure processes used in the demon’s memory. Third, we generalize the nonequilibrium equalities such as the fluctuation theorem and the Jarzynski equality to classical stochastic dynamics in the presence of feedback control. In these results, thermodynamic quantities and information contents are treated on an equal footing. Moreover, the obtained inequalities and equalities are model-independent, so that they can be applied to a broad range of information processing applications. Our findings could be called the second law of “information thermodynamics”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Maxwell, Theory of Heat (Appleton, London, 1871)

    Google Scholar 

  2. H.S. Leff, A.F. Rex (eds.), Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Princeton University Press, New Jersey, 2003)

    Google Scholar 

  3. K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. O.J.E. Maroney, Information processing and thermodynamic entropy, in The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta (Fall 2009 Edition).

    Google Scholar 

  5. T. Sagawa, M. Ueda, Information thermodynamics: Maxwell’s demon in nonequilibrium dynamics, in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, ed. by R. Klages, W. Just, C. Jarzynski (Wiley-VCH, Weinheim, 2012), arXiv:1111.5769 (2011) (To appear).

    Google Scholar 

  6. S. Carnot, Réflexions sur la pussance motrice du feu et sur les machines propresà développer atte puissance (Bachelier, Paris, 1824)

    Google Scholar 

  7. L. Tisza, P.M. Quay, Ann. Phys. 25, 48 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E.H. Lieb, J. Yngvason, Phys. Rept. 310, 1 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985)

    MATH  Google Scholar 

  10. H. Tasaki, Thermodynanmics–From a Modern Point of View (Baifu-kan, Chiyoda, 2000). (in Japanese)

    Google Scholar 

  11. S. Sasa, Introduction to Thermodynamics (Kyoritsu, Tokyo, 2000). (in Japanese)

    Google Scholar 

  12. A. Shimizu, Principles of Thermodynamics (University of Tokyo Press, Tokyo, 2007). (in Japanese)

    Google Scholar 

  13. L. Szilard, Z. Phys. 53, 840 (1929)

    Article  ADS  MATH  Google Scholar 

  14. C. Shannon, Bell Syst. Tech. J. 27(371–423), 623–656 (1948)

    MathSciNet  Google Scholar 

  15. L. Brillouin, J. Appl. Phys. 22, 334 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982)

    Article  Google Scholar 

  17. R. Landauer, IBM J. Res. Dev. 5, 183 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  18. W.H. Zurek, Nature 341, 119 (1989)

    Article  ADS  Google Scholar 

  19. W.H. Zurek, Phys. Rev. A 40, 4731 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Shizume, Phys. Rev. E 52, 3495 (1995)

    Article  ADS  Google Scholar 

  21. R. Landauer, Science 272, 1914 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. H. Matsueda, E. Goto, K-F. Loe, RIMS Kôkyûroku 1013, 187 (1997)

    Google Scholar 

  23. B. Piechocinska, Phys. Rev. A 61, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  24. C.H. Bennett, Stud. Hist. Philos. Mod. Phys. 34, 501 (2003)

    Article  MATH  Google Scholar 

  25. A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. E 64, 0561171 (2001)

    Article  Google Scholar 

  26. C. Horhammer, H. Buttner, J. Stat. Phys. 133, 1161 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. M.M. Barkeshli, arXiv:cond-mat/0504323 (2005).

    Google Scholar 

  28. J.D. Norton, Stud. Hist. Philos. Mod. Phys. 36, 375 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. O.J.E. Maroney, Phys. Rev. E 79, 031105 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Turgut, Phys. Rev. E 79, 041102 (2009)

    Article  ADS  Google Scholar 

  31. T. Sagawa, M. Ueda, Phys. Rev. Lett. 102, 250602 (2009)

    Article  ADS  Google Scholar 

  32. T. Sagawa, M. Ueda, Phys. Rev. Lett. 106, 189901(E) (2011).

    Google Scholar 

  33. T. Sagawa, Prog. Theor. Phys. 127, 1 (2012)

    Article  ADS  MATH  Google Scholar 

  34. M. Schliwa, G. Woehlke, Nature 422, 751–765 (2003)

    Article  ADS  Google Scholar 

  35. Y. Shirai et al., Nano Lett. 5, 2330 (2005)

    Article  ADS  Google Scholar 

  36. V. Serreli et al., Nature 445, 523 (2007)

    Article  ADS  Google Scholar 

  37. S. Rahav, J. Horowitz, C. Jarzynski, Phys. Rev. Lett. 101, 140602 (2008)

    Article  ADS  Google Scholar 

  38. E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. 46, 72 (2007)

    Article  Google Scholar 

  39. H. Gu et al., Nature 465, 202 (2010)

    Article  ADS  Google Scholar 

  40. K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

    Article  ADS  Google Scholar 

  41. C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 43 (2005)

    Article  Google Scholar 

  42. U. Seifert, Eur. Phys. J. B 64, 423 (2008)

    Article  ADS  MATH  Google Scholar 

  43. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)

    Article  ADS  MATH  Google Scholar 

  44. G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)

    Article  ADS  Google Scholar 

  45. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  46. J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. G.E. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  49. C. Maes, J. Stat. Phys. 95, 367 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. C. Jarzynski, J. Stat. Phys. 98, 77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. J. von Neumann, Mathematische Grundlagen der Quantumechanik (Springer, Berlin, 1932). [Eng. trans. R.T. Beyer, Mathematical Foundations of Quantum Mechanics (Prinston University Press, Princeton, 1955)]

    Google Scholar 

  52. E.B. Davies, J.T. Lewis, Commun. Math. Phys. 17, 239 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. K. Kraus, Ann. Phys. 64, 311 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. M. Ozawa, J. Math. Phys. 25, 79 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  55. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  56. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  57. K. Koshino, A. Shimizu, Phys. Rept. 412, 191 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  58. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, UK, 2010)

    MATH  Google Scholar 

  59. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

    Book  MATH  Google Scholar 

  60. S. Lloyd, Phys. Rev. A 39, 5378 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  61. C.M. Caves, Phys. Rev. Lett. 64, 2111 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. S. Lloyd, Phys. Rev. A 56, 3374 (1997)

    Article  ADS  Google Scholar 

  63. M.A. Nielsen, C.M. Caves, B. Schumacher, H. Barnum, Proc. R. Soc. Lond. A 454, 277 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. H. Touchette, S. Lloyd, Phys. Rev. Lett. 84, 1156 (2000)

    Article  ADS  Google Scholar 

  65. W.H. Zurek, arXiv:quant-ph/0301076 (2003).

    Google Scholar 

  66. T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  67. A.E. Allahverdyan, R. Balian, ThM Nieuwenhuizen, J. Mod. Opt. 51, 2703 (2004)

    Article  ADS  MATH  Google Scholar 

  68. H. Touchette, S. Lloyd, Phys. A 331, 140 (2004)

    Article  MathSciNet  Google Scholar 

  69. H.T. Quan, Y.D. Wang, Y-x. Liu, C. P. Sun, F. Nori. Phys. Rev. Lett. 97, 180402 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  70. F.J. Cao, L. Dinis, J.M.R. Parrondo, Phys. Rev. Lett. 93, 040603 (2004)

    Article  ADS  Google Scholar 

  71. K.H. Kim, H. Qian, Phys. Rev. Lett. 93, 120602 (2004)

    Article  ADS  Google Scholar 

  72. K.H. Kim, H. Qian, Phys. Rev. E 75, 022102 (2007)

    Article  ADS  Google Scholar 

  73. B.J. Lopez, N.J. Kuwada, E.M. Craig, B.R. Long, H. Linke, Phys. Rev. Lett. 101, 220601 (2008)

    Article  ADS  Google Scholar 

  74. A.E. Allahverdyan, D.B. Saakian, Europhys. Lett. 81, 30003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  75. T. Sagawa, M. Ueda, Phys. Rev. Lett. 100, 080403 (2008)

    Article  ADS  Google Scholar 

  76. K. Jacobs, Phys. Rev. A 80, 012322 (2009)

    Article  ADS  Google Scholar 

  77. F.J. Cao, M. Feito, Phys. Rev. E 79, 041118 (2009)

    Article  ADS  Google Scholar 

  78. M. Feito, J.P. Baltanas, F.J. Cao, Phys. Rev. E 80, 031128 (2009)

    Article  ADS  Google Scholar 

  79. F.J. Cao, M. Feito, H. Touchette, Phys. A 388, 113 (2009)

    Article  Google Scholar 

  80. T. Sagawa, M. Ueda, Phys. Rev. Lett. 104, 090602 (2010)

    Article  ADS  Google Scholar 

  81. M. Ponmurugan, Phys. Rev. E 82, 031129 (2010)

    Article  ADS  Google Scholar 

  82. Y. Fujitani, H. Suzuki, J. Phys. Soc. Jpn. 79, 104003 (2010)

    Article  ADS  Google Scholar 

  83. J.M. Horowitz, S. Vaikuntanathan, Phys. Rev. E 82, 061120 (2010)

    Article  ADS  Google Scholar 

  84. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010)

    Article  Google Scholar 

  85. S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106, 070401 (2011)

    Article  ADS  Google Scholar 

  86. Y. Morikuni, H. Tasaki, J. Stat. Phys. 143, 1 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  87. S. Ito, M. Sano, Phys. Rev. E 84, 021123 (2011)

    Article  ADS  Google Scholar 

  88. J.M. Horowitz, J.M.R. Parrondo, Europhys. Lett. 95, 10005 (2011)

    Article  ADS  Google Scholar 

  89. D. Abreu, U. Seifert, Europhys. Lett. 94, 10001 (2011)

    Article  ADS  Google Scholar 

  90. S. Vaikuntanathan, C. Jarzynski, Phys. Rev. E 83, 061120 (2011)

    Article  ADS  Google Scholar 

  91. T. Sagawa, J. Phys. Conf. Ser. 297, 012015 (2011)

    Article  ADS  Google Scholar 

  92. H. Dong, D.Z. Xu, C.Y. Cai, C.P. Sun, Phys. Rev. E 83, 061108 (2011)

    Article  ADS  Google Scholar 

  93. D.V. Averin, M. Möttönen, J.P. Pekola, Phys. Rev. B 84, 245448 (2011)

    Article  ADS  Google Scholar 

  94. J.M. Horowitz, J.M.R. Parrondo, New J. Phys. 13, 123019 (2011)

    Article  ADS  Google Scholar 

  95. L. Granger, H. Kantz, Phys. Rev. E 84, 061110 (2011)

    Article  ADS  Google Scholar 

  96. S. Lahiri, S. Rana, A.M. Jayannavar, J. Phys. A: Math. Theor. 45, 065002 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  97. Y. Lu, G.L. Long, Phys. Rev. E 85, 011125 (2012)

    Article  ADS  Google Scholar 

  98. T. Sagawa, M. Ueda, Phys. Rev. E 85, 021104 (2012)

    Article  ADS  Google Scholar 

  99. J.C. Doyle, B.A. Francis, A.R. Tannenbaum, Feedback Control Theory (Macmillan, New York, 1992)

    Google Scholar 

  100. K.J. Åstrom, R.M. Murray, Feedback Systems: An Introduction for Scientists and Engineers (Princeton University Press, Princeton, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Sagawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Sagawa, T. (2012). Introduction. In: Thermodynamics of Information Processing in Small Systems. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54168-4_1

Download citation

Publish with us

Policies and ethics