Skip to main content

Dirac Operator in Dense QCD

  • Chapter
  • First Online:
Book cover Dirac Spectra in Dense QCD

Part of the book series: Springer Theses ((Springer Theses,volume 124))

  • 444 Accesses

Abstract

This and the next chapter constitute the main part of this thesis. In this chapter, we will show that exact analysis of the Dirac operator is possible in the high density BCS phase of QCD for two and three colors, where the symmetries are spontaneously broken by the diquark condensate \(\langle qq \rangle \), rather than by the conventional chiral condensate \(\langle \bar{q}q \rangle \). In Sects. 3.1 and 3.2 we define and analyze the \(\varepsilon \)-regime at high density. We will show a novel link between the spectrum of low-lying Dirac eigenvalues and the BCS pairing gap. In Sects. 3.3 and 3.4 we introduce and solve ChRMT for two-color QCD at nonzero chemical potential. We will analyze in detail the dependence of the microscopic Dirac spectrum on the quark masses and the chemical potential. Finally in Sect. 3.5 we analyze the sign problem based on the exact results in the previous section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Precisely speaking, this symmetry is slightly violated by nonzero chiral condensate generated by instanton effects. At asymptotically large \(\mu \) it is negligibly small and one can neglect it in the following.

  2. 2.

    \(\Delta \) diverges as \(\mu \rightarrow \infty \), see Chap. 2 Eq. (2.2).

  3. 3.

    Definition: \(\delta ^2(z)\equiv \delta (\mathrm {Re} z)\delta (\mathrm {Im} z)\).

  4. 4.

    It acquires a nonzero expectation value once the gauge fixing is performed.

  5. 5.

    The Wess-Zumino-Witten term is necessary for completeness of the theory, but it is irrelevant to the ensuing analysis and neglected in the following.

  6. 6.

    For \(N_f=2\), \(UI_2U^T=(\det U)I_2=I_2\) is constant, in accordance with the isomorphism \(\text{ SU}(2)\cong \text{ Sp}(2)\).

  7. 7.

    If the quark masses are non-degenerate, the \(\Pi ^a\) modes acquire masses.

  8. 8.

    We thank Thomas Schäfer for a communication on this point.

  9. 9.

    A pfaffian of an \(n\times n\) antisymmetric matrix \(X\) (for even \(n\)) is defined as

    $$ \mathrm {Pf} (X)=\frac{1}{2^{n/2}(n/2)!}\sum _{\sigma } \,\mathrm {sgn} (\sigma )X_{\sigma (1)\sigma (2)}\dots X_{\sigma (n-1)\sigma (n)}\,, $$

    where the sum runs over all permutations \(\sigma \) of \(1,\,2,\,\dots ,n\). Note that this definition differs by a factor of \(1/2^{n/2}\) from [[38] Eq. (A.8)].

  10. 10.

    Note that the mass term at \({\mathcal O}(M^2)\) is unique, in contrast to the CFL phase (cf. p. 66).

  11. 11.

    We repeatedly used the identities \(I_n^{\prime }(x)=[I_{n-1}(x)+I_{n+1}(x)]/2\) and \(I_n(x)/x=[I_{n-1}(x)-I_{n+1}(x)]/2n\).

  12. 12.

    The model (3.74) is not new. It corresponds to class \(2P\) in Magnea’s mathematical classification of non-Hermitian random matrix ensembles, see ([[45] Table 2]). What is new is the realization that (3.74) describes dense two-color QCD.

  13. 13.

    To avoid confusion: On page 41 the pattern is denoted as \(\text{ SU}(2N_f)\rightarrow \text{ Sp}(2N_f)\) because \(\text{ U}(1)_A\) is not regarded as an exact symmetry there.

  14. 14.

    See p. 39.

  15. 15.

    The large-\(N\) limit with \({\mathcal O}(1)\) non-Hermitian parameter is called the limit of strong non-Hermiticity in the conventional classification (p. 47).

  16. 16.

    For finite \(N\), the massive partition functions were obtained in [66] with the aid of skew-orthogonal polynomials. However we do not consider finite \(N\), since the universal correspondence of ChRMT to QCD emerges only in the large-\(N\) limit.

  17. 17.

    It should not be confused with the BCS gap \(\Delta \).

  18. 18.

    Note that no NG mode appears in \(N_f=1\) two-color QCD. The above \(m_{\pi }\) refers to the mass of the NG modes that appear in \(N_f\ge 2\) two-color QCD.

References

  1. N. Yamamoto, T. Kanazawa, Dense QCD in a finite volume. Phys. Rev. Lett. 103, 032001 (2009)

    Article  ADS  Google Scholar 

  2. H. Leutwyler, A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD. Phys. Rev. D46, 5607–5632 (1992)

    MathSciNet  ADS  Google Scholar 

  3. R. Casalbuoni, R. Gatto, Effective theory for color-flavor locking in high density QCD. Phys. Lett. B464, 111–116 (1999)

    ADS  Google Scholar 

  4. D.T. Son, M.A. Stephanov, Inverse meson mass ordering in color-flavor-locking phase of high density QCD. Phys. Rev. D61, 074012 (2000)

    ADS  Google Scholar 

  5. D.T. Son, M.A. Stephanov, Inverse meson mass ordering in color-flavor-locking phase of high density QCD: Erratum. Phys. Rev. D62, 059902 (2000)

    ADS  Google Scholar 

  6. T. Schäfer, Mass terms in effective theories of high density quark matter. Phys. Rev. D65, 074006 (2002)

    ADS  Google Scholar 

  7. P.F. Bedaque, T. Schäfer, High density Quark matter under stress. Nucl. Phys. A697, 802–822 (2002)

    ADS  Google Scholar 

  8. P.F. Bedaque, T. Schafer, High density Quark matter under stress. Nucl. Phys. A697, 802–822 (2002)

    ADS  Google Scholar 

  9. T. Schafer, Instanton effects in QCD at high baryon density. Phys. Rev. D65, 094033 (2002)

    MathSciNet  ADS  Google Scholar 

  10. N. Yamamoto, Instanton-induced crossover in dense QCD. JHEP 12, 060 (2008)

    Google Scholar 

  11. T. Schäfer, F. Wilczek, Continuity of quark and hadron matter. Phys. Rev. Lett. 82, 3956–3959 (1999)

    Article  ADS  Google Scholar 

  12. A.D. Jackson, M.K. Sener, J.J.M. Verbaarschot, Finite volume partition functions and Itzykson-Zuber integrals. Phys. Lett. B387, 355–360 (1996)

    MathSciNet  ADS  Google Scholar 

  13. E.V. Shuryak, J.J.M. Verbaarschot, Random matrix theory and spectral sum rules for the Dirac operator in QCD. Nucl. Phys. A560, 306–320 (1993)

    ADS  Google Scholar 

  14. J.J.M. Verbaarschot, I. Zahed, Spectral density of the QCD Dirac operator near zero virtuality. Phys. Rev. Lett. 70, 3852–3855 (1993)

    Article  ADS  Google Scholar 

  15. J.C. Osborn, D. Toublan, J.J.M. Verbaarschot, From chiral random matrix theory to chiral perturbation theory. Nucl. Phys. B540, 317–344 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  16. P.H. Damgaard, J.C. Osborn, D. Toublan, J.J.M. Verbaarschot, The microscopic spectral density of the QCD Dirac operator. Nucl. Phys. B547, 305–328 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  17. Y. Watanabe, K. Fukushima, T. Hatsuda, Order parameters with higher dimensionful composite fields. Prog. Theoret. Phys. 111, 967–972 (2004)

    Article  ADS  Google Scholar 

  18. T. Kanazawa, T. Wettig, N. Yamamoto, Chiral Lagrangian and spectral sum rules for dense two-color QCD. JHEP 08, 003 (2009)

    Article  ADS  Google Scholar 

  19. T. Kanazawa, T. Wettig, N. Yamamoto, Chiral Lagrangian and spectral sum rules for two-color QCD at high density. PoS LAT2009, 195 (2009)

    Google Scholar 

  20. L. He, Nambu-Jona-Lasinio model description of weakly interacting Bose condensate and BEC-BCS crossover in dense QCD-like theories. Phys. Rev. D82, 096003 (2010)

    ADS  Google Scholar 

  21. K. Fukushima, K. Iida, Larkin-Ovchinnikov-Fulde-Ferrell state in two-color quark matter. Phys. Rev. D76, 054004 (2007)

    ADS  Google Scholar 

  22. J.O. Andersen, T. Brauner, Phase diagram of two-color quark matter at nonzero baryon and isospin density. Phys. Rev. D81, 096004 (2010)

    ADS  Google Scholar 

  23. T. Zhang, T. Brauner, D.H. Rischke, QCD-like theories at nonzero temperature and density. JHEP 06, 064 (2010)

    Article  ADS  Google Scholar 

  24. T. Brauner, K. Fukushima, Y. Hidaka, Two-color quark matter: \(U(1)_A\) restoration, superfluidity, and quarkyonic phase. Phys. Rev. D80, 074035 (2009)

    ADS  Google Scholar 

  25. K. Splittorff, D.T. Son, M.A. Stephanov, QCD-like theories at finite Baryon and Isospin density. Phys. Rev. D64, 016003 (2001)

    ADS  Google Scholar 

  26. D.M. Eagles, Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456–463 (1969)

    Article  ADS  Google Scholar 

  27. A.J. Leggett, Cooper pairing in spin-polarized Fermi systems, J. Phys. (Paris) Colloq. 41, 7–19 (1980)

    Google Scholar 

  28. P. Nozieres, S. Schmitt-Rink, Bose condensation in an attractive fermion gas: From weak to strong coupling superconduct ivity. J. Low. Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  29. S. Hands, S. Kim, J.-I. Skullerud, Deconfinement in dense 2-color QCD. Eur. Phys. J. C48, 193 (2006)

    Article  ADS  Google Scholar 

  30. S. Hands, S. Kim, J.-I. Skullerud, A Quarkyonic phase in dense two color matter? Phys. Rev. D81, 091502 (2010)

    ADS  Google Scholar 

  31. M.G. Alford, K. Rajagopal, F. Wilczek, QCD at finite baryon density: nucleon droplets and color superconductivity. Phys. Lett. B422, 247–256 (1998)

    ADS  Google Scholar 

  32. R. Rapp, T. Schäfer, E.V. Shuryak, M. Velkovsky, Diquark Bose condensates in high density matter and instantons. Phys. Rev. Lett. 81, 53–56 (1998)

    Article  ADS  Google Scholar 

  33. N. Yamamoto, M. Tachibana, T. Hatsuda, G. Baym, Phase structure, collective modes, and the axial anomaly in dense QCD. Phys. Rev. D76, 074001 (2007)

    ADS  Google Scholar 

  34. T. Schäfer, QCD and the eta’ mass: instantons or confinement? Phys. Rev. D67, 074502 (2003)

    ADS  Google Scholar 

  35. D.H. Rischke, Debye screening and Meissner effect in a two-flavor color superconductor. Phys. Rev. D62, 034007 (2000)

    ADS  Google Scholar 

  36. D.H. Rischke, D.T. Son, M.A. Stephanov, Asymptotic deconfinement in high-density QCD. Phys. Rev. Lett. 87, 062001 (2001)

    Article  ADS  Google Scholar 

  37. J. Gasser, H. Leutwyler, Thermodynamics of chiral symmetry. Phys. Lett. B188, 477 (1987)

    ADS  Google Scholar 

  38. A.V. Smilga, J.J.M. Verbaarschot, Spectral sum rules and finite volume partition function in gauge theories with real and pseudoreal fermions. Phys. Rev. D51, 829–837 (1995)

    MathSciNet  ADS  Google Scholar 

  39. M. Kieburg, T. Guhr, A new approach to derive Pfaffian structures for random matrix ensembles. J. Phys. A43, 135204 (2010)

    MathSciNet  ADS  Google Scholar 

  40. J.J.M. Verbaarschot, T. Wettig, Random matrix theory and chiral symmetry in QCD. Ann. Rev. Nucl. Part. Sci. 50, 343–410 (2000)

    Article  ADS  Google Scholar 

  41. P.H. Damgaard, S.M. Nishigaki, Universal spectral correlators and massive Dirac operators. Nucl. Phys. B518, 495–512 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  42. P.H. Damgaard, Massive spectral sum rules for the Dirac operator. Phys. Lett. B425, 151–157 (1998)

    MathSciNet  ADS  Google Scholar 

  43. T. Wilke, T. Guhr, T. Wettig, The microscopic spectrum of the QCD Dirac operator with finite quark masses. Phys. Rev. D57, 6486–6495 (1998)

    ADS  Google Scholar 

  44. T. Kanazawa, T. Wettig, N. Yamamoto, Chiral random matrix theory for two-color QCD at high density. Phys. Rev. D81, 081701 (2010)

    ADS  Google Scholar 

  45. U. Magnea, Random matrices beyond the Cartan classification. J. Phys. A41, 045203 (2008)

    MathSciNet  ADS  Google Scholar 

  46. T. Schäfer, Instanton effects in QCD at high baryon density. Phys. Rev. D65, 094033 (2002)

    ADS  Google Scholar 

  47. J.J.M. Verbaarschot, The Spectrum of the Dirac operator near zero virtuality for N(c) = 2 and chiral random matrix theory. Nucl. Phys. B426, 559–574 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  48. A.M. Halasz, J.J.M. Verbaarschot, Effective Lagrangians and chiral random matrix theory. Phys. Rev. D52, 2563–2573 (1995)

    ADS  Google Scholar 

  49. B. Vanderheyden, A.D. Jackson, A random matrix model for color superconductivity at zero chemical potential. Phys. Rev. D61, 076004 (2000)

    ADS  Google Scholar 

  50. B. Vanderheyden, A.D. Jackson, Random matrix model for chiral symmetry breaking and color superconductivity in QCD at finite density. Phys. Rev. D62, 094010 (2000)

    ADS  Google Scholar 

  51. B. Vanderheyden, A.D. Jackson, Random matrix study of the phase structure of QCD with two colors. Phys. Rev. D64, 074016 (2001)

    ADS  Google Scholar 

  52. S. Pepin, A. Schäfer, QCD at high baryon density in a random matrix model. Eur. Phys. J. A10, 303–308 (2001)

    ADS  Google Scholar 

  53. B. Klein, D. Toublan, J.J.M. Verbaarschot, The QCD phase diagram at nonzero temperature, baryon and isospin chemical potentials in random matrix theory. Phys. Rev. D68, 014009 (2003)

    ADS  Google Scholar 

  54. B. Klein, D. Toublan, J.J.M. Verbaarschot, Diquark and pion condensation in random matrix models for two-color QCD. Phys. Rev. D72, 015007 (2005)

    ADS  Google Scholar 

  55. J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot, A. Zhitnitsky, QCD-like theories at finite baryon density. Nucl. Phys. B582, 477–513 (2000)

    Article  ADS  Google Scholar 

  56. D.T. Son, Superconductivity by long-range color magnetic interaction in high-density quark matter. Phys. Rev. D59, 094019 (1999)

    MathSciNet  ADS  Google Scholar 

  57. G. Akemann, M.J. Phillips, H.J. Sommers, Characteristic polynomials in real ginibre ensembles. J. Phys. A42, 012001 (2009)

    MathSciNet  ADS  Google Scholar 

  58. G. Akemann, M.J. Phillips, H.J. Sommers, The chiral Gaussian two-matrix ensemble of real asymmetric matrices. J. Phys. A43, 085211 (2010)

    MathSciNet  ADS  Google Scholar 

  59. T. Kanazawa, T. Wettig, N. Yamamoto, Singular values of the Dirac operator in dense QCD-like theories. JHEP 12, 007 (2011)

    Article  ADS  Google Scholar 

  60. H.J. Sommers, Symplectic structure of the real Ginibre ensemble. J. Phys. A40, F671 (2007)

    MathSciNet  ADS  Google Scholar 

  61. P.J. Forrester, T. Nagao, Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99, 050603 (2007)

    Article  ADS  Google Scholar 

  62. A. Borodin, C.D. Sinclair, Correlation functions of asymmetric real matrices, http://xxx.lanl.gov/abs/0706.2670 arXiv:0706.2670

  63. A. Borodin, C.D. Sinclair, The Ginibre ensemble of real random matrices and its scaling limits. Commun. Math. Phys. 291, 177–224 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. P.J. Forrester, T. Nagao, Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble. J. Phys. A41, 375003 (2008)

    MathSciNet  Google Scholar 

  65. H.J. Sommers, W. Wieczorek, General eigenvalue correlations for the real ginibre ensemble. J. Phys. A41, 405003 (2008)

    MathSciNet  Google Scholar 

  66. G. Akemann, M. Kieburg, M.J. Phillips, Skew-orthogonal Laguerre polynomials for chiral real asymmetric random matrices. J. Phys. A43, 375207 (2010)

    MathSciNet  Google Scholar 

  67. M. Kieburg, T. Guhr, Derivation of determinantal structures for random matrix ensembles in a new way. J. Phys. A43, 075201 (2010)

    MathSciNet  ADS  Google Scholar 

  68. G. Akemann, Matrix models and QCD with chemical potential. Int. J. Mod. Phys. A22, 1077–1122 (2007)

    MathSciNet  ADS  Google Scholar 

  69. T. Nagao, S.M. Nishigaki, Massive chiral random matrix ensembles at beta = 1 and 4: finite-volume QCD partition functions. Phys. Rev. D62, 065006 (2000)

    MathSciNet  ADS  Google Scholar 

  70. T. Nagao, S.M. Nishigaki, Massive chiral random matrix ensembles at beta = 1 and 4: QCD Dirac operator spectra. Phys. Rev. D62, 065007 (2000)

    MathSciNet  ADS  Google Scholar 

  71. J.C. Osborn, K. Splittorff, J.J.M. Verbaarschot, Chiral symmetry breaking and the Dirac spectrum at nonzero chemical potential. Phys. Rev. Lett. 94, 202001 (2005)

    Article  ADS  Google Scholar 

  72. J.C. Osborn, K. Splittorff, J.J.M. Verbaarschot, Chiral condensate at nonzero chemical potential in the microscopic limit of QCD. Phys. Rev. D78, 065029 (2008)

    ADS  Google Scholar 

  73. J.C. Osborn, K. Splittorff, J.J.M. Verbaarschot, Phase diagram of the Dirac spectrum at nonzero chemical potential. Phys. Rev. D78, 105006 (2008)

    ADS  Google Scholar 

  74. G. Akemann, T. Kanazawa, M.J. Phillips, T. Wettig, Random matrix theory of unquenched two-colour QCD with nonzero chemical potential. JHEP 03, 066 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  75. M.J. Phillips, A random matrix model for two-colour QCD at non-zero quark density. Doctoral thesis submitted to Brunel University (2011) http://bura.brunel.ac.uk/handle/2438/5084

  76. J.C.R. Bloch, T. Wettig, Random matrix analysis of the QCD sign problem for general topology. JHEP 03, 100 (2009)

    Article  ADS  Google Scholar 

  77. K. Splittorff, J.J.M. Verbaarschot, Phase of the Fermion determinant at nonzero chemical potential. Phys. Rev. Lett. 98, 031601 (2007)

    Article  ADS  Google Scholar 

  78. K. Splittorff, J.J.M. Verbaarschot, The QCD sign problem for small chemical potential. Phys. Rev. D75, 116003 (2007)

    ADS  Google Scholar 

  79. K. Splittorff, The sign problem in the epsilon-regime of QCD. PoS LAT2006, 023 (2006).

    Google Scholar 

  80. J. Han, M.A. Stephanov, A random matrix study of the QCD sign problem. Phys. Rev. D78, 054507 (2008)

    ADS  Google Scholar 

  81. G. Akemann, G. Vernizzi, Characteristic polynomials of complex random matrix models. Nucl. Phys. B660, 532–556 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  82. S. Hands et al., Numerical study of dense adjoint matter in two color QCD. Eur. Phys. J. C17, 285–302 (2000)

    Article  ADS  Google Scholar 

  83. S. Hands, I. Montvay, L. Scorzato, J. Skullerud, Diquark condensation in dense adjoint matter. Eur. Phys. J. C22, 451–461 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Kanazawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Kanazawa, T. (2012). Dirac Operator in Dense QCD. In: Dirac Spectra in Dense QCD. Springer Theses, vol 124. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54165-3_3

Download citation

Publish with us

Policies and ethics