Skip to main content

Co-benefits of Sustainable Forest Management for Carbon Sequestration

  • Chapter
  • First Online:
Co-benefits of Sustainable Forestry

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

Abstract

Tropical forests sequester a large amount of carbon in the vegetation and soils (approximately 25 % of the carbon in the terrestrial ecosystems) (Bonan 2008). The conversion of tropical forests through forestry and land-use change results in an enormous emission of carbon to the atmosphere. In the past decade, deforestation and forest degradation in Southeast Asia and elsewhere in the tropics accounted for approximately 20 % of global anthropogenic carbon emissions (Gullison et al. 2007). The important roles of natural tropical forests in carbon storage and climate change mitigation are increasingly recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiba SI, Kitayama K (2002) Effects of the 1997–98 El Niño drought on rain forests of Mount Kinabalu, Borneo. J Trop Ecol 18:215–230

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Fiore AD, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Silva JNM, Martínez RV (2004) Increasing biomass in Amazonian forest plots. Philos Trans Roy Soc B Biol Sci 359:353–365

    Article  Google Scholar 

  • Bertault JG, Sist P (1997) An experimental comparison of different harvesting intensities with reduced-impact and conventional logging in East Kalimantan, Indonesia. For Ecol Manag 94:209–218

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Burghouts TBA, Van Straalen NM, Bruijnzeel LA (1998) Spatial heterogeneity of element and litter turnover in a Bornean rain forest. J Trop Ecol 14:477–506

    Article  Google Scholar 

  • Cannon CH, Peart DR, Leighton M, Kartawinata K (1994) The structure of lowland rainforest after selective logging in West Kalimantan, Indonesia. For Ecol Manag 67:49–68

    Article  Google Scholar 

  • Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503

    Article  PubMed  Google Scholar 

  • Davidson EA, De Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Sabá RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature (Lond) 447:995–998

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Glauner R, Ditzer T, Huth A (2003) Growth and yield of tropical moist forest for forest planning: an inquiry through modeling. Can J For Res 33:521–535

    Article  Google Scholar 

  • Gullison RE, Frumhoff PC, Canadell JG, Field CB, Nepstad DC, Hayhoe K, Avissar R, Curran LM, Friedlingstein P, Jones CD, Nobre C (2007) Tropical forests and climate policy. Science 316:985–986

    Article  PubMed  CAS  Google Scholar 

  • Harmon ME, Whigham DF, Sexton J (1995) Decomposition and mass of woody detritus in the dry tropical forest of the Northeastern Yucatan Peninsula, Mexico. Biotropica 27:305–316

    Article  Google Scholar 

  • Hertel D, Moser G, Culmsee H, Erasmi S, Horna V, Schuldt B, Leuschner Ch (2009) Below- and above-ground biomass and net primary production in a paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests. For Ecol Manag 258:1904–1912

    Article  Google Scholar 

  • Huth A, Ditzer T (2001) Long-term impacts of logging in a tropical rain forest: a simulation study. For Ecol Manag 142:33–51

    Article  Google Scholar 

  • Imai N, Kitayama K, Titin J (2010) Distribution of phosphorus in an above-to-below-ground profile in a Bornean tropical rain forest. J Trop Ecol 26:627–636

    Article  Google Scholar 

  • Imai N, Samejima H, Langner A, Ong RC, Kita S, Titin J, Chung AY, Lagan P, Lee YF, Kitayama K (2009) Co-benefits of sustainable forest management in biodiversity conservation and carbon sequestration. PLoS One 4:e8267

    Article  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) IPCC Fourth Assessment Report: Climate Change 2007

    Google Scholar 

  • Kelly RH, Parton WJ, Crocker GJ, Grace PR, Klír J, Körschens M, Poulton PR, Richter DD (1997) Simulating trends in soil organic carbon in long-term experiments using the century model. Geoderma 81:75–90

    Article  Google Scholar 

  • Kitayama K, Aiba SI (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51

    Article  Google Scholar 

  • Kitayama K, Majalap-Lee N, Aiba SI (2000) Soil phosphorus fractionation and phosphorus-use efficiency of tropical rainforests on Mt. Kinabalu, Borneo. Oecologia (Berl) 123:342–349

    Article  Google Scholar 

  • Kitayama K, Aiba SI, Takyu M, Majalap N, Wagai R (2004) Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil ageing with podozolization. Ecosystems 7:259–274

    Article  CAS  Google Scholar 

  • Kleine M, Heuveldop J (1993) A management of planning concept for sustained yield of tropical forests in Sabah, Malaysia. For Ecol Manag 61:277–297

    Article  Google Scholar 

  • Lagan P, Mannan S, Matsubayashi H (2007) Sustainable use of tropical forests by reduced-impact logging in Deramakot forest reserve, Sabah, Malaysia. Ecol Res 22:414–421

    Article  Google Scholar 

  • Lawrence D, D’Odorico P, Diekmann L, DeLonge M, Das R, Eaton J (2007) Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proc Natl Acad Sci USA 104:20696–20701

    Article  PubMed  CAS  Google Scholar 

  • Leuschner C, Harteveld M, Hertel D (2009) Consequences of increasing forest use intensity for biomass, morphology and growth of fine roots in a tropical moist forest on Sulawesi, Indonesia. Agric Ecosyst Environ 129:474–481

    Article  Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Djuikouo KMN, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana JR, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KSH, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Wöll H (2009) Increasing carbon storage in intact African tropical forests. Science 323:1344–1347

    Article  PubMed  Google Scholar 

  • Mazzei L, Sist P, Ruschel A, Putz FE, Marco P, Pena W, Ferreira JER (2010) Above-ground biomass dynamics after reduced-impact logging in the Eastern Amazon. For Ecol Manag 259:367–373

    Article  Google Scholar 

  • McPhaden MJ (1999) The child prodigy of 1997–98. Nature (Lond) 398:559–562

    Article  CAS  Google Scholar 

  • Metherell AK, Harding LA, Cole CV, Parton WJ (1993) Century Soil Organic Matter Model Environment: technical documentation. Agroecosystem version 4.0. USDA-ARS. Colorado State University, Fort Collins

    Google Scholar 

  • Niiyama K, Kajimoto T, Matsuura Y, Yamashita T, Matsuo N, Yashiro Y, Ripin A, Kassim AR, Noor NS (2010) Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. J Trop Ecol 26:271–284

    Article  Google Scholar 

  • Ong RC, Kleine M (1995) DIPSIM: a dipterocarp forest growth simulation model for Sabah. FRC Research Papers 2. Forestry Department, Sabah

    Google Scholar 

  • Parton WJ (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles 7:785–809

    Article  CAS  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO (1995) Impact of climate change on grassland production and soil carbon worldwide. Global Change Biol 1:13–22

    Article  Google Scholar 

  • Pendry CA, Proctor J (1996) The causes of altitudinal zonation of rain forests on Bukit Belalong, Brunei. J Ecol 84:407–418

    Article  Google Scholar 

  • Phillips OL, Lewis SL, Baker TR, Chao KJ, Higuchi N (2008) The changing Amazon forest. Philos Trans Roy Soc B Biol Sci 363:1819–1827

    Article  Google Scholar 

  • Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, Van Der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Bánki O, Blanc L, Bonal D, Brando P, Chave J, De Oliveira ÁCA, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patiño S, Peñuela MC, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas AS, Steege HT, Stropp J, Vásquez R, Zelazowski P, Dávila EA, Andelman S, Andrade A, Chao KJ, Erwin T, Di Fiore A, Honorio EC, Keeling H, Killeen TJ, Laurance WF, Cruz AP, Pitman NCA, Vargas PN, Ramírez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347

    Article  PubMed  CAS  Google Scholar 

  • Pinard MA, Cropper WP (2000) Simulated effects of logging on carbon storage in dipterocarp forest. J Appl Ecol 37:267–283

    Article  Google Scholar 

  • Pinard MA, Putz FE (1996) Retaining forest biomass by reducing logging damage. Biotropica 28:278–295

    Article  Google Scholar 

  • Proctor J, Anderson JM, Fogden SCL, Vallack HW (1983) Ecological studies in four contrasting lowland rain forests in Gunung Mulu national park, Sarawak. II. Litterfall, litter standing crop and preliminary observations on herbivory. J Ecol 71:261–283

    Article  Google Scholar 

  • Putz FE, Sist P, Fredericksen T, Dykstra D (2008a) Reduced-impact logging: challenges and opportunities. For Ecol Manag 256:1427–1433

    Article  Google Scholar 

  • Putz FE, Zuidema PA, Pinard MA, Boot RGA, Sayer JA, Sheil D, Sist P, Elias VJK (2008b) Improved tropical forest management for carbon retention. PLoS Biol 6:e166

    Article  PubMed  Google Scholar 

  • Raich JW, Parton WJ, Russell AE, Sanford RL Jr, Vitousek PM (2000) Analysis of factors regulating ecosystem development on Mauna Loa using the Century model. Biogeochemistry 51:161–191

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006

    Article  PubMed  CAS  Google Scholar 

  • Sabah Forestry Department (2005) Forest management plan 2, 1st January 2005 - 31st December 2014, Deramakot Forest Reserve, Forest Management Unit no. 19. Sandakan, Sabah, Malaysia

    Google Scholar 

  • Sanford RLJR, Parton WJ, Ojima DS, Lodge DJ (1991) Hurricane effects on soil organic matter dynamics and forest production in the Luquillo Experimental Forest, Puerto Rico: results of simulation modeling. Biotropica 23:364–372

    Article  Google Scholar 

  • Sato H (2009) Simulation of the vegetation structure and function in a Malaysian tropical rain forest using the individual-based dynamic vegetation model SEIB-DGVM. For Ecol Manag 257:2277–2286

    Article  Google Scholar 

  • Schimel DS (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles 8:279–293

    Article  CAS  Google Scholar 

  • Schimel DS, Braswell BH, McKeown R, Ojima DS, Parton WJ, Pulliam W (1996) Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochem Cycles 10:677–692

    Article  CAS  Google Scholar 

  • Schimel DS, Braswell BH, Parton WJ (1997) Equilibration of the terrestrial water, nitrogen, and carbon cycle. Proc Natl Acad Sci USA 94:8280–8283

    Article  PubMed  CAS  Google Scholar 

  • Seino T, Takyu M, Aiba SI, Kitayama K, Ong RC (2005) Floristic composition, stand structure, and above-ground biomass of the tropical rain forests of Deramakot and Tangkulap Forest Reserve in Malaysia under different forest managements. In: Lee YF, Chung AYC, Kitayama K (eds) Proceedings of the 2nd workshop on synergy between carbon management and biodiversity conservation in tropical rain forests. Forest Research Centre, Forestry Department, Sabah, pp 29–52

    Article  PubMed  CAS  Google Scholar 

  • Silver WL, Thompson AW, McGroddy ME, Varner RK, Dias JD, Silva H, Crill PM, Keller M (2005) Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biol 11:290–306

    Google Scholar 

  • Sist P, Nolan T, Bertault JG, Dykstra D (1998) Harvesting intensity versus sustainability in Indonesia. For Ecol Manag 108:251–260

    Article  Google Scholar 

  • Sist P, Sheil D, Kartawinata K, Priyadi H (2003) Reduced-impact logging in Indonesian Borneo: some results confirming the need for new silvicultural prescriptions. For Ecol Manag 179:415–427

    Article  Google Scholar 

  • Slik JWF, Bernard CS, Breman FC, Van Beek M, Salim A, Sheil D (2008) Wood density as a conservation tool: quantification of disturbance and identification of conservation-priority areas in tropical forests. Conserv Biol 22:1299–1308

    Article  PubMed  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    Article  PubMed  CAS  Google Scholar 

  • Yarie J, Billings S (2002) Carbon balance of the taiga forest within Alaska: present and future. Can J For Res 32:757–767

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Imai, N., Titin, J., Kita, S., Ong, R.C., Kitayama, K. (2012). Co-benefits of Sustainable Forest Management for Carbon Sequestration. In: Kitayama, K. (eds) Co-benefits of Sustainable Forestry. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54141-7_7

Download citation

Publish with us

Policies and ethics