Skip to main content

Multidrug Efflux Pumps and Development of Therapeutic Strategies to Control Infectious Diseases

  • Conference paper
  • First Online:
Chembiomolecular Science
  • 1218 Accesses

Abstract

Bacteria have developed various ways to resist the toxic effects of antibiotics and other drugs [1]. One of these mechanisms involves the production of enzymes that inactivate antibiotics by hydrolysis or lead to the formation of inactive derivatives [2]. A second mechanism of resistance is target alteration. Cellular targets can be altered by mutation or enzymatic modification in such a way that the affinity of the antibiotic for the target is reduced [3]. These mechanisms are all specific for a single drug or a single class of drugs. However, there are more general mechanisms of resistance in which access of the unaltered agent to the target is prevented by the barrier and active transport functions of biological membranes. The barrier cannot prevent the drugs from exerting their toxic action once they have entered the cell, and the active efflux of drugs is essential to ensure significant levels of drug resistance [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064–1073

    Article  PubMed  CAS  Google Scholar 

  2. Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    Article  PubMed  CAS  Google Scholar 

  3. Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264:388–393

    Article  PubMed  CAS  Google Scholar 

  4. Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388

    Article  PubMed  CAS  Google Scholar 

  5. Nishino K (2005) Bacterial multidrug exporters: insights into acquisition of multidrug resistance. Science [online publication] http://www.sciencemag.org/feature/data/prizes/ge/2004/nishino.dtl

  6. Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella entericaserovar Typhimurium. Mol Microbiol 59:126–141

    Article  PubMed  CAS  Google Scholar 

  7. Nishino K, Yamaguchi A (2008) Role of xenobiotic transporters in bacterial drug resistance and virulence. IUBMB Life 60:569–574

    Article  PubMed  CAS  Google Scholar 

  8. Nishino K, Yamaguchi A (2008) Virulence and drug resistance roles of multidrug efflux pumps in Escherichia coliand Salmonella. Biosci Microflora 27:75–85

    CAS  Google Scholar 

  9. Nishino K, Nikaido E, Yamaguchi A (2009) Regulation and physiological function of multidrug efflux pumps in Escherichia coliand Salmonella. Biochim Biophys Acta 1794:834–843

    Article  PubMed  CAS  Google Scholar 

  10. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812

    Article  PubMed  CAS  Google Scholar 

  11. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coliK-12. Science 277:1453–1474

    Article  PubMed  CAS  Google Scholar 

  12. Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–5644

    Article  PubMed  CAS  Google Scholar 

  13. Kobayashi N, Nishino K, Hirata T, Yamaguchi A (2003) Membrane topology of ABC-type macrolide antibiotic exporter MacB in Escherichia coli. FEBS Lett 546:241–246

    Article  PubMed  CAS  Google Scholar 

  14. Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A (2004) Effects of efflux transporter genes on susceptibility of Escherichia colito tigecycline (GAR-936). Antimicrob Agents Chemother 48:2179–2184

    Article  PubMed  CAS  Google Scholar 

  15. Horiyama T, Nikaido E, Yamaguchi A, Nishino K (2011) Roles of Salmonellamultidrug efflux pumps in tigecycline resistance. J Antimicrob Chemother 66:105–110

    Article  PubMed  CAS  Google Scholar 

  16. Cloeckaert A, Chaslus-Dancla E (2001) Mechanisms of quinolone resistance in Salmonella. Vet Res 32:291–300

    Article  PubMed  CAS  Google Scholar 

  17. Baucheron S, Imberechts H, Chaslus-Dancla E, Cloeckaert A (2002) The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella entericaserovar typhimurium phage type DT204. Microb Drug Resist 8:281–289

    Article  PubMed  CAS  Google Scholar 

  18. Baucheron S, Chaslus-Dancla E, Cloeckaert A (2004) Role of TolC and parCmutation in high-level fluoroquinolone resistance in Salmonella entericaserotype Typhimurium DT204. J Antimicrob Chemother 53:657–659

    Article  PubMed  CAS  Google Scholar 

  19. Horiyama T, Yamaguchi A, Nishino K (2010) TolC dependency of multidrug efflux systems in Salmonella entericaserovar Typhimurium. J Antimicrob Chemother 65:1372–1376

    Article  PubMed  CAS  Google Scholar 

  20. Hirakawa H, Takumi-Kobayashi A, Theisen U, Hirata T, Nishino K, Yamaguchi A (2008) AcrS/EnvR represses expression of the acrABmultidrug efflux genes in Escherichia coli. J Bacteriol 190:6276–6279

    Article  PubMed  CAS  Google Scholar 

  21. Nishino K, Nikaido E, Yamaguchi A (2007) Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella entericaserovar Typhimurium. J Bacteriol 189:9066–9075

    Article  PubMed  CAS  Google Scholar 

  22. Nikaido E, Yamaguchi A, Nishino K (2008) AcrAB multidrug efflux pump regulation in Salmonella entericaserovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253

    Article  PubMed  CAS  Google Scholar 

  23. Nikaido E, Shirosaka I, Yamaguchi A, Nishino K (2011) Regulation of the AcrAB multidrug efflux pump in Salmonella entericaserovar Typhimurium in response to indole and paraquat. Microbiology 157:648–655

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank all my colleagues who contributed to the work discussed in this review. This study was supported by the funding program for Next Generation World-Leading Researchers from Cabinet Office, Government of Japan, and the grant-in-aid from the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Nishino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this paper

Cite this paper

Nishino, K. (2012). Multidrug Efflux Pumps and Development of Therapeutic Strategies to Control Infectious Diseases. In: Shibasaki, M., Iino, M., Osada, H. (eds) Chembiomolecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54038-0_27

Download citation

Publish with us

Policies and ethics