Toward Complexity

  • Yoshitsugu Oono
Part of the Springer Series in Synergetics book series (SSSYN)


The chapter begins with the acceptance of the proposition, “organisms are complex systems.” Organisms are from organisms, because formation of an organism requires a lot of prerequisite conditions; complex systems are included in a class of systems that require a lot of indispensable preconditions (fundamental conditions) for their formation (ontogeny). Fundamental conditions are prepared by a long time evolution process, so organisms cannot self-organize; self-organizing systems cannot be complex. Thus, to aim at conceptual analysis of and establishing of phenomenology of fundamental conditions must be a key task of the genuine complex systems studies. To this end we must pay due attention to actual biological systems. It is obvious that the so-called complex systems studies studied mostly pseudocomplex systems. The chapter concludes with some preliminary but general phenomenological observations about evolution of fundamental conditions (e.g., how complexity evolves) and about organisms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, PW (1998) Concepts in solids: lectures on the theory of solids. World ScientificGoogle Scholar
  2. Badii R, Politi A (1997) Complexity: hierarchical structures and scaling in physics. Cambridge University PressGoogle Scholar
  3. Bailey DH, Crandall RE (2001) On the random character of fundamental constant expansions. Experimental Math 10:175-190MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bakker RT (1983) The deer flees, the wolf pursues: incongruence in predator­ prey coevolution: In Futuyma DJ, Slatkin M (ed) Coevolution. SinauerGoogle Scholar
  5. Bateson M, DesireS, Gartside SE, Wright GA (2011) Agitated honeybees exhibit pessimistic cognitive biases. Curr Biol 21:1070-1073CrossRefGoogle Scholar
  6. Bedau MA, McCaskill JS, Packard NH, Rasmussen S, Adami C, Green DG, Ikegami T, Kaneko K, Ray TS (2000) Open problems in artificial life. Artificial Life 6:363-376CrossRefGoogle Scholar
  7. Bemporad F, Gsponer J, Hopearuoho HI, Plakoutsi G, Stati G, Stefani M, Taddei N, Vendruscolo M, Chiti F (2008) Biological function in a non-native partially folded state of a protein. EMBO J 27:1525-1535Google Scholar
  8. Britten RJ (2006) Almost all human genes resulted from ancient duplication. Proc Natl Acad Sci USA 103:19027-19032ADSCrossRefGoogle Scholar
  9. Bulhak AC (1996) On the simulation of post modernism and mental debility using recursive transition networks. Monash University Department of Computer Science, Technical Report 264Google Scholar
  10. Bunner AE, Beck AH, Williamson JR (2010) Kinetic cooperativity in Escherichia coli 30S ribosomal subunit reconstitution reveals additional complexity in the assembly landscape. Proc Natl Acad Sci USA 107:5417-5422ADSCrossRefGoogle Scholar
  11. Carr EH (1967) What is history? VintageGoogle Scholar
  12. Chari A, Fischer U (2010) Cellular strategies for the assembly of molecular machines. TI:ends Biochem Sci 35:676-683CrossRefGoogle Scholar
  13. Chomsky N (1995) The minimalist program. MIT PressGoogle Scholar
  14. Conant GC, Wolfe KH (2006) Functional partitioning of yeast co-expression networks after genome duplication. PLoS Biol 4:e109CrossRefGoogle Scholar
  15. Conway Morris S, Gould SJ (1998) Showdown on the Burgess Shale. Natural History Magazine 107(10):48-55Google Scholar
  16. Covello PS, Gray MW (1993) On the evolution of RNA editing. TI:ends Genet 9:265-268CrossRefGoogle Scholar
  17. Daggett V, Fersht A (2003) The present view of the mechanism of protein folding. Nat Rev Mol Cell Biol4:497-502CrossRefGoogle Scholar
  18. Damasio A (1994) Descartes' error, emotion, reason, and the human brain. G P PutnamGoogle Scholar
  19. Da miano L, Luisi PL (2010) Towards an autopoietic redefinition of life. Origin Life 40:145-149Google Scholar
  20. Das C, Tyler JK, Churchill MEA (2010) The histone shuffle: histone chaper ones in an energetic dance. TI:ends Biochem Sci 35:476-489CrossRefGoogle Scholar
  21. Dupoux E, Jacob P (2007) Universal moral grammar: a critical appraisal. Trends Cognitive Sci 11:373-378CrossRefGoogle Scholar
  22. Ebert J (2005) Tongue tied. Nature 438:148-149ADSCrossRefGoogle Scholar
  23. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597-604CrossRefGoogle Scholar
  24. Fernandez A, Lynch M (2011) Non-adaptive origins of interactome complexity. Nature 474:502-506CrossRefGoogle Scholar
  25. Flux JFC (2001) Evidence of self-limitation in wild vertebrate populations. Oikos 92:555-557CrossRefGoogle Scholar
  26. Forterre P, Gribaldo S (2010) Bacteria with a eukaryotic touch: A glimpse of ancient evolution? Proc Natl Acad Sci USA 107:12739-12740ADSCrossRefGoogle Scholar
  27. Flitzsch G, et al (2008) PCR survey of Xenoturbella bocki Hox genes. J Exper Zool 310:278-284Google Scholar
  28. FrommE (1950) Man for himself-an enquiry into the psychology of ethics- Routledge & Kagan Paul Ltd.Google Scholar
  29. Fuerst JA, Sagulenko E (2010) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403-413CrossRefGoogle Scholar
  30. Gaut BS, Ross-Ibarra J (2008) Selection on major components of angiosperm genomes. Science 320:484-486ADSCrossRefGoogle Scholar
  31. Geison GL (1995) The private science of Louis Pasteur. Princeton University PressGoogle Scholar
  32. Gilbert DT, Wilson TD (2007) Prospection: experiencing the future. Science 317:1351-1354ADSCrossRefGoogle Scholar
  33. Glazier DS (2008) Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals. Proc Roy Soc Lond, Ser B: Biol Sci 275: 1405-1410CrossRefGoogle Scholar
  34. Go N (2007) Physics and biology of protein folding. Frog Theor Phys Supp 170:198-213ADSCrossRefGoogle Scholar
  35. Gooel K (1995) Collected Works vol3 (ed. Fefferman S, Dawaon JW Jr., Goldfarb W, Parsons C, Soloway RN). Oxford University PressGoogle Scholar
  36. Gould SJ (2002) The structure of evolution theory. Harvard University PressGoogle Scholar
  37. Gray MW (2010) Irremediable complexity? Science 330:920-921ADSCrossRefGoogle Scholar
  38. Grosshans H, Filipowicz W (2008) The expanding world of small RNAs. Nature 451:414-416ADSCrossRefGoogle Scholar
  39. Hadamard J (1954) The Psychology of invention in the mathematical field.DoverGoogle Scholar
  40. Han JH, Batey S, Nickson AA, Teichmann SA, Clarke J (2007) The folding and evolution of multidomain proteins. Nature Rev Mol Cell Biol 8:319-330CrossRefGoogle Scholar
  41. Hanczyc MM, Ikegami T (2010) Chemical basis for minimal cognition. Artificial Life 16:233-243CrossRefGoogle Scholar
  42. Hardy GH (1940) A mathematician's apology. Cambridge University PressGoogle Scholar
  43. Hartl FU, Bracher A, Hayer-Hartl H (2011) Molecular chaperones in protein folding and proteostasis. Nature 4 75:324-332CrossRefGoogle Scholar
  44. Hayek FA (1948) Individualism and economic order, University of Chicago Press Hayek FA (1960) The constitution of liberty. University of Chicago Press Heimbauer L,Google Scholar
  45. Beran MJ, Owren MJ (2011) A chimpanzee recognizes synthetic speech with significantly reduced acoustic cues to phonetic content. Curr Biol 21:1210-1214CrossRefGoogle Scholar
  46. Huff TE (2011) Int ellectual curiosity and the scientific revolution: a global perspect ive. Cambridge University PressGoogle Scholar
  47. Ikega mi E (2005) Bonds of civility: aesthetic networks and political origin of Japa nese culture. Cambridge University PressGoogle Scholar
  48. Izutsu T (1991) Consciousness and essence. IwanamiGoogle Scholar
  49. Jackson A (2004) Comme appele du neant -as if summoned from the void: the life of Alexandre Grothendieck. Notices Amer Math Soc 51:1038-1056MathSciNetzbMATHGoogle Scholar
  50. Kacian DL, Mills DR, Kramer FR, Spiegelman S (1972) A replicating RNA molecule suitable for a detailed analysis of extracellular evolution and replication. Proc Natl Acad Sci USA 69:3038-3042ADSCrossRefGoogle Scholar
  51. Kaneko K (2010) Life: an introduction to complex systems biology. SpringerGoogle Scholar
  52. Keeling PJ, et al (2005) The tree of eukaryotes. Trends Ecol Evol 20:670-676CrossRefGoogle Scholar
  53. King N, et al (2008) The genome of the choanoflagellate M onosiga bremcollis and the origin of metazoans. Nature 451:783-788ADSCrossRefGoogle Scholar
  54. Kodaira K (1976) Introduction to analysis. IwanamiGoogle Scholar
  55. Kolokotrones T, Savage V, Deeds EJ, Fontana F (2010) Curvature in metabolic scaling. Nature 464:753-756ADSCrossRefGoogle Scholar
  56. Kropelin S, et al (2007) Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320:765-768ADSCrossRefGoogle Scholar
  57. Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011-1014ADSCrossRefGoogle Scholar
  58. Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310:1628-1632ADSCrossRefGoogle Scholar
  59. Levine SA (1999) Fragile dominion-complexity and the commons. Perseus PublishingGoogle Scholar
  60. Levine SA (2006) Fundamental questions in biology. PLoS Biol 4:e300CrossRefGoogle Scholar
  61. Liang M, Nielsen R (2011) Q&A: Who is H sapiens really, and how do we know? BMC Biol 9:20CrossRefGoogle Scholar
  62. Liberek K, Lewandowska A, Zi tkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27:328-335Google Scholar
  63. Little SC, et al (2011) The formation of the bicoid morphogen gradient requires protein movement from anteriorly localized mRN A. PLoS Biology 9:e196CrossRefGoogle Scholar
  64. Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345-352CrossRefGoogle Scholar
  65. Mattick JS (2009) Deconstructing the dogma, a new view of the evolution and genetic programming of complex organisms. Ann N.Y Acad Sci 1178:29-46Google Scholar
  66. Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Letters 585:1600-1616CrossRefGoogle Scholar
  67. May RM (2006) Network structure and the biology of populations. Trends Evo Eco 21:394-399CrossRefGoogle Scholar
  68. Mitchell M (2009) Complexity: a guided tour. Oxford University PressGoogle Scholar
  69. Murzin AG (1989) M etamorphic proteins. Science 320:1725-1726ADSCrossRefGoogle Scholar
  70. Nicolis G, Prigogine I (1989) Exploration of complexity. W H FreemanGoogle Scholar
  71. Nierhaus KH (1991) The assembly of prokaryotic ribosomes. Biochimie 73:739- 755CrossRefGoogle Scholar
  72. Nozaki H, et al (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phyl Evol 53:872-880CrossRefGoogle Scholar
  73. Ohno S (1970) Evolution by gene duplication. SpringerGoogle Scholar
  74. Oono Y (1998) Complex systems study as biology. Int J Mod Phys B 12:245-256ADSCrossRefGoogle Scholar
  75. Oono Y (2008) Bio-physics manifesto-for the future of physics and biology. In: Ishiwata S, Matsunaga Y (ed) Physics of self-organization systems. World ScientificGoogle Scholar
  76. Orr HA (2010) The descent of Gould. New Yorker, 2002-09-30Google Scholar
  77. Ortega y Gasset J (1932) The revolt of the masses. Norton & Co.Google Scholar
  78. Panse VG, Johnson AW (2010) Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci 35:260-266CrossRefGoogle Scholar
  79. Peterson KJ, Sperling EA (2007) Poriferan ANTP genes: primitively simple or secondarily reduced?. Evol Dev 9:405-408CrossRefGoogle Scholar
  80. Pica P, Lerner IC, Izard V, Dehaene S (2004) Exact and approximate arithmetic in an amazonian indigenous group. Science 306:499-503ADSCrossRefGoogle Scholar
  81. Pinker S (1994) The Language instinct: how the mind creates language. Harper CollinsGoogle Scholar
  82. Pinker S (1999) Words and rules. Basic BooksGoogle Scholar
  83. Poulos JA (2008) Irreligion. Hill and WangGoogle Scholar
  84. Przlj N, Corneil DG, Jurisica I (2005) Modeling interactome: scale-free or geometric? Bioinformatics 20:3508-3515CrossRefGoogle Scholar
  85. Reggia JA, Armentrout SL, Chou H-H, Peng Y (1993) Simple systems that exhibit self-directed replication. Science 259:1282-1287MathSciNetADSzbMATHCrossRefGoogle Scholar
  86. Rodrigues-Martins A, Riparbelli M, Callaini G, Glover DM, Bettencourt-Dias M (2007) Revisiting the role of the mother centriole in centriole biogenesis. Science, 316:1046-1050ADSCrossRefGoogle Scholar
  87. Roger AJ, Simpson AGB (2009) Revisiting the root of the eukaryote tree. Curr Biol19:R165-R167CrossRefGoogle Scholar
  88. Rosen, R (1991) Life itself. Columbia University PressGoogle Scholar
  89. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336-342ADSCrossRefGoogle Scholar
  90. Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2:e153CrossRefGoogle Scholar
  91. Sangster TA, Salathi N, Lee HN, Watanabe E, Schellenber K, Morneau K, Wang H, Undurraga S, Queitsch C, Lindquist S (2008) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:2969-2974ADSCrossRefGoogle Scholar
  92. Sieg AE, O'Connor MP, McNair JN, Grant BW, Agosta SJ, Dunham AE (2009) Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter?" Am Nat 174:720-733CrossRefGoogle Scholar
  93. Simpson GG (1967) The meaning of evolution-a study of history of life and of its significance for man-. Yale University PressGoogle Scholar
  94. Smiley RD, Collins TRL, Hammes GG, Hsieh T-S (2007) Single-molecule measurements of the opening and closing of the DNA gate by eukaryotic topoisomerase II. Proc Natl Acad Sci USA 104:4840-4845ADSCrossRefGoogle Scholar
  95. Spiegelman S (1971) An approach to the experimental analysis of precellular evolution. Q Rev Biophys 4:213-253CrossRefGoogle Scholar
  96. Spitzer JJ, Poolman B (2005) Electrochemical structure of the crowded cytoplasm. Trends Biochem Sci 30:536-541CrossRefGoogle Scholar
  97. Staley JP, Woolford Jr JL (2009) Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Comm Cell Biol 21:109-118CrossRefGoogle Scholar
  98. Stearns SC (2007) Are we stalled part way through a major evolutionary transition from individual to group? Evolution 61:2275-2280CrossRefGoogle Scholar
  99. Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49:169-181CrossRefGoogle Scholar
  100. Stuhl K (1999) Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 98:1-4CrossRefGoogle Scholar
  101. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021-1025ADSCrossRefGoogle Scholar
  102. Sykes MT, Williamson JR (2009) A complex assembly landscape of ribosomal subunit. Annu Rev Biophys 38:197-215CrossRefGoogle Scholar
  103. Szathmary E, Maynard-Smith J (1995) The major evolutionary transitions. Nature 374:227-232ADSCrossRefGoogle Scholar
  104. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein coding DNA and eukaryotic complexity. BioEssays 29:288-299CrossRefGoogle Scholar
  105. Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615-634CrossRefGoogle Scholar
  106. Ullers RS, Ang D, Schwager E, Georgopoulos C, Genevaux P (2007) Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. Proc Natl Acad Sci USA 104:3101-3106ADSCrossRefGoogle Scholar
  107. Vermeij GJ (2006) Historical contingency and the purported uniqueness of evolutionary innovations. Proc Natl Acad Sci USA 103:1804-1809ADSCrossRefGoogle Scholar
  108. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell124:573- 586CrossRefGoogle Scholar
  109. von Neumann J (1961-3) The general and logical theory of automata. In: Taub AH (ed) John von Neumann Collected Works Vol. V. Pergamon PressGoogle Scholar
  110. Waddington CH (1957) The strategy of the gene. Allen and UnwinGoogle Scholar
  111. Waldrop MM (1992) Complexity: the emerging science at the edge of order and chaos. Simon & SchusterGoogle Scholar
  112. Wang M, Kurland CG, Caetano-Anolles G (2011) Reductive evolution of proteomes and protein structures. Proc Natl Acad Sci USA 108:11954-11958CrossRefGoogle Scholar
  113. Weinberg S (1992) Dream of a final theory, the scientist's search for the ultimate laws of nature. VintageGoogle Scholar
  114. Woese CR (1998) Default taxonomy: Ernst Mayr's view of the microbial world. Proc Natl Acad Sci USA 95:11043-11046ADSCrossRefGoogle Scholar
  115. Wolfenstein L (2003) Lessons from Kepler and the theory of everything. Proc Natl Acad Sci USA 100:5001-5003ADSCrossRefGoogle Scholar
  116. Young JC, Agashe VR, Siegers K, Hartl FU (2007) Pathways of chaperonemediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781-791CrossRefGoogle Scholar
  117. Zwanzig R, Szabo A, Bagchi B (1992) Levinthal's paradox. Proc Natl Acad Sci USA 86:20-22.ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Yoshitsugu Oono
    • 1
  1. 1.University of IllinoisUrbanaUSA

Personalised recommendations