Skip to main content

Urban Growth Modeling Using the Bayesian Probability Function

  • Chapter
  • First Online:
Book cover Progress in Geospatial Analysis

Abstract

Urban growth is recognized as physical and functional changes due to the transition of rural landscapes to urban forms. The time–space relationship plays an important role in understanding the dynamic process of urban growth. This dynamic process consists of a complex nonlinear interaction between several components, i.e., topography, rivers, land use, transportation, culture, population, economy, and growth policies. Many efforts have been made to improve such dynamic process representations with the utility of cellular automata (CA) coupled with fuzzy logic (Liu 2009), artificial neural networks (Li and Yeh 2002; Almeida et al. 2008), Markov chains with a modified genetic algorithm (Tang et al. 2007), weight of evidence (Soares-Filho et al. 2004), nonordinal and multi-nominal logit estimators (Landis 2001), SLEUTH (Clarke et al. 1997; Jantz et al. 2010), and others (White and Engelen 1997; Batty et al. 1997).

This chapter has been improved from “Rajesh Bahadur Thapa and Yuji Murayama (2010), Urban growth modeling of Kathmandu metropolitan region, Nepal. Computers, Environment and Urban Systems, 35(1), 25–34,” Copyright (2011), with permission from Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida CM, Gleriani JM, Castejon EF, Soares-Filho BS (2008) Using neural networks and cellular automata for modeling intra-urban land-use dynamics. Int J Geogr Inf Sci 22:943–963

    Article  Google Scholar 

  • Batty M, Couclelis H, Eichen M (1997) Urban systems as cellular automata. Environ Plann B 24:175–192

    Article  Google Scholar 

  • Bhattarai K, Conway D (2010) Urban vulnerabilities in the Kathmandu valley, Nepal: visualizations of human/hazard interactions. J Geogr Inf Syst 2:63–84

    Google Scholar 

  • Bonham-Carter G (1994) Geographic information systems for geoscientists: modeling with GIS. Pergamon, New York

    Google Scholar 

  • Cadwallader MT (1996) Urban geography: an analytical approach. Prentice-Hall, New Jersey

    Google Scholar 

  • CBS (2001) Population of Nepal (selected data–central development region). His Majesty’s Government of Nepal, Kathmandu

    Google Scholar 

  • Clarke KC, Hoppen S, Gaydos LJ (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco bay area. Environ Plann B 24:247–261

    Article  Google Scholar 

  • Eastman JR (2009) IDRISI Taiga, Guide to GIS and remote processing. Clark University, Worcester

    Google Scholar 

  • Godoy MMG, Soares-Filho BS (2008) Modelling intra-urban dynamics in the Savassi neighbourhood, Belo Horizonte city, Brazil. In: Paegelow M, Olmedo MTC (eds) Modelling environmental dynamics. Springer, Berlin, pp 319–338

    Chapter  Google Scholar 

  • Goodacre CM, Bonham-Carter GF, Asterberg FP, Wright DF (1993) A statistical analysis of spatial association of seismicity with drainage patterns and magnetic anomalies in western Quebec. Tectonophysics 217:285–305

    Article  Google Scholar 

  • Haack B (2009) A history and analysis of mapping urban expansion in the Kathmandu valley, Nepal. Cartogr J 46:233–241

    Article  Google Scholar 

  • ICIMOD/UNEP (2001) Kathmandu valley GIS database. Kathmandu: ICIMOD

    Google Scholar 

  • Jantz CA, Goetz SJ, Donato D, Claggett P (2010) Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Comput Environ Urban Syst 34:1–16

    Article  Google Scholar 

  • Klosterman RE, Pettit CJ (2005) Guest editorial: an update on planning support systems. Environ Plann B 32:477–484

    Article  Google Scholar 

  • KVUDC (2002) Long term development concept of Kathmandu valley. Kathmandu Valley Urban Development Committee, Kathmandu

    Google Scholar 

  • Landis J (2001) CUF, CUF II, and CURBA: a family of spatially explicit urban growth and land-use policy simulation models. In: Brail RK, Klosterman RE (eds) Planning support systems: integrating geographic information systems, models and visualization tools. ESRI, Redlands, pp 157–200

    Google Scholar 

  • Li X, Yeh AG (2002) Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16:323–343

    Article  Google Scholar 

  • Liu Y (2009) Modelling urban development with geographical information system and cellular automata. Taylor and Francis, Boca Raton

    Google Scholar 

  • Pontius RG, Boersma W, Castella J, Clarke KC, de Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E, Lippitt CD, McConnell W, Sood AM, Pijanowski B, Pithadia S, Sweeney S, Trung TN, Veldkamp AT, Verburg PH (2008) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42:11–47

    Article  Google Scholar 

  • Portnov BA, Adhikari M, Schwartz M (2007) Urban growth in Nepal: does location matter? Urban Stud 44:915–937

    Article  Google Scholar 

  • Soares-Filho BS, Alencar A, Nespad D, Cerqueira GC, Dial M, Del C, Solozarno L, Voll E (2004) Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: the Santarem-Cuiaba corridor. Glob Chang Biol 10:745–764

    Article  Google Scholar 

  • Tang J, Wang L, Yao Z (2007) Spatio-temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm. Int J Remote Sens 28:3255–3271

    Article  Google Scholar 

  • Thapa RB (2009) Spatial process of urbanization in Kathmandu valley, Nepal. PhD Dissertation. Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki

    Google Scholar 

  • Thapa RB, Murayama Y (2009) Examining spatiotemporal urbanization patterns in Kathmandu valley, Nepal: remote sensing and spatial metrics approaches. Remote Sens 1:534–556

    Article  Google Scholar 

  • Thapa RB, Murayama Y (2010) Drivers of urban growth in the Kathmandu valley, Nepal: examining the efficacy of the analytic hierarchy process. Appl Geogr 30:70–83

    Article  Google Scholar 

  • Thapa RB, Murayama Y, Ale S (2008) Kathmandu. Cities 25:45–57

    Article  Google Scholar 

  • White R, Engelen G (1997) Cellular automata as the basis of integrated dynamic regional modeling. Environ Plann B 24:235–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Bahadur Thapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Thapa, R.B., Murayama, Y. (2012). Urban Growth Modeling Using the Bayesian Probability Function. In: Murayama, Y. (eds) Progress in Geospatial Analysis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54000-7_13

Download citation

Publish with us

Policies and ethics