Skip to main content

HEC-1 Cells: Establishment of an In Vitro Experimental System in Endometrial Carcinoma

  • Chapter
Cell and Molecular Biology of Endometrial Carcinoma

Summary

The HEC-1 cell line was the first in vitro cell line of a human endometrial adenocarcinoma, which enabled us to perform research work on the endometrium and endometrial carcinoma at the level of a simplified cellular system; contributing to cell and molecular biological studies on endometrial carcinoma. Once a cell line is established, it provides a stable experimental system that facilitates and progresses the study of the tissues and/or neoplasias from which the cell line is derived. In this article, we report how HEC-1 cells have been established and cleared the proposed requirements to characterize an established cell line. In addition, in order to demonstrate the usefulness of the cell lines for research work once they have been established, we illustrate these concepts by recalling results obtained with HEC-1 and the HEC family of endometrial carcinoma cells and review the literature with regard to what has been achieved by using these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuramoto H, Tamura S, Notake Y (1972) Establishment of a cell line of human endometrial adenocarcinoma in vitro. Am J Obstet Gynecol 114:1012–1019

    PubMed  CAS  Google Scholar 

  2. Kuramoto H (1972) Studies of the growth and cytogenetic properties of human endometrial adenocarcinoma in culture and its development into an established line. Acta Obstet Gynaecol Jpn 19:47–58

    PubMed  CAS  Google Scholar 

  3. Editorial Board of the Japanese Human Cell Society (1995) The guideline for the report on establishment and identification of a cultured cell line. Hum Cell 8:63–66 (in Japanese)

    Google Scholar 

  4. Kuramoto H, Hamano M (1977) Cytogenetic studies of human endometrial carcinomas by means of tissue culture. Acta Cytol 21:559–565

    PubMed  CAS  Google Scholar 

  5. Harada K, Miura T, Saitoh S et al. (1987) Scanning electron microscopic studies on the cell surface and cell synchronized culture of human endometrial adenocarcinoma (HEC-1) cells. Acta Obstet Gynaecol Jpn 39:531–538

    CAS  Google Scholar 

  6. Noumoff J, Haydock SW, Sachdeva R et al. (1987) Characteristics of cell lines derived from normal and malignant endometrium. Gynecol Oncol 27:141–149

    Article  PubMed  CAS  Google Scholar 

  7. Kuramoto H, Suzuki K (1976) Effects of progesterone on the growth kinetics and the morphology of a human endometrial cancer cell-line. Acta Obstet Gynaecol Jpn 23:123–132

    PubMed  CAS  Google Scholar 

  8. Noumoff JS, Simon D, Heyner S et al. (1988) Cytogenetics of an endometrial adenocarcinoma cell line and its implications. Gynecol Oncol 31:217–222

    Article  PubMed  CAS  Google Scholar 

  9. Kuramoto H, Hamano M (1977) Establishment and characterization of the cell-line of a human endometrial adenoacanthoma. Eur J Cancer 13:253–259

    Article  PubMed  CAS  Google Scholar 

  10. Kuramoto H, Hamano M, Nishida M et al. (1976) Establishment of a cell line of human endometrial carcinoma originated from ascitic fluid. Acta Obstet Gynaecol Jpn 28:1405–1406

    Google Scholar 

  11. Morisawa T (1987) The results of primary culture of endometrial adenocarcinoma and characterization of its established cell lines. J Jpn Soc Clin Cytol 26:433–442

    Article  Google Scholar 

  12. Kuramoto H, Nishida M, Morisawa T et al. (1991) Establishment and characterization of human endometrial cancer cell lines. Ann NY Acad Sci 622:402–421

    Article  PubMed  CAS  Google Scholar 

  13. Kanai T, Watanabe J, Kamata Y et al. (2001) Stimulatory effect of medroxyprogesterone acetate on p27 protein in endometrial cancer cells. Kitasato Med 31:392–397

    Google Scholar 

  14. Kuramoto H, Hamano M (1996) HEC-1 cells for in vitro hormone studies: A model to obtain a stable cellular system for in vitro studies. In: Kuramoto H, Gurpide E (eds) In vitro biology of sex steroid hormone action. Churchill Livingstone, Tokyo, pp 63–84

    Google Scholar 

  15. Satyaswaroop PG, Fleming H, Bressler RS et al. (1978) Human endometrial cancer cell cultures for hormonal studies. Cancer Res 38:4367–4375

    PubMed  CAS  Google Scholar 

  16. Kassan S, Mechanick JI, Gurpide E (1989) Altered estrogen receptor system in estrogen-unresponsive human endometrial adenocarcinoma cells. J Steroid Biochem 33:327–333

    Article  PubMed  CAS  Google Scholar 

  17. Fleming H, Gurpide E (1981) Rapid fluctuations in the levels of specific estradiol binding sites in endometrial cells in culture. Endocrinology 108:1744–1750

    Article  PubMed  CAS  Google Scholar 

  18. Fridman O, Fleming H, Gurpide E (1982) Variability of levels of specific estrogen binding in a human endometrial adenocarcinoma cell line. J Steroid Biochem 16:607–612

    Article  PubMed  CAS  Google Scholar 

  19. Fleming H, Namit C, Gurpide E (1980) Estrogen receptors in epithelial and stromal cells of human endometrium in culture. J Steroid Biochem 12:169–174

    Article  PubMed  CAS  Google Scholar 

  20. Fleming H, Blumenthal R, Gurpide E (1982) Effects of cyclic nucleotides on estradiol binding in human endometrium. Endocrinology 111:1671–1677

    Article  PubMed  CAS  Google Scholar 

  21. Fleming H, Blumenthal R, Gurpide E (1983) Rapid changes in specific estrogen binding elicited by cGMP or cAMP in cytosol from human endometrial cells. Proc Natl Acad Sci USA 80:2486–2490

    Article  PubMed  CAS  Google Scholar 

  22. Gurpide E, Blumenthal R, Fleming H (1984) Regulation of estrogen receptor levels in endometrial cancer cells. In: Hormones and cancer. Alan R. Liss, New York, pp 145–165

    Google Scholar 

  23. Fleming H, Blumenthal R, Gurpide E (1984) Characteristics of cyclic nucleotide dependent regulation of cytoplasmic E2 binders in cultured endometrial and breast cells. J Steroid Biochem 20:5–9

    Article  PubMed  CAS  Google Scholar 

  24. Holinka CF, Gurpide E (1985) Ornithine decarboxylase activity in human endometrium and endometrial cancer cells. In Vitro Cell Dev Biol 21:697–706

    Article  PubMed  CAS  Google Scholar 

  25. Yoshizumi N (1985) The effects of site-directed chemotherapy due to E2 as a drug carrier to the human endometrial adenocarcinoma cells in vitro. Acta Obstet Gynaecol Jpn 37:637–645

    CAS  Google Scholar 

  26. Fujimoto J, Hori M, Ichigo S et al. (1995) Estrogen activates invasiveness of endometrial cancer cells to the interstitium. Invasion Metastasis 15:135–143

    PubMed  CAS  Google Scholar 

  27. Fujimoto J, Hori M, Ichigo S et al. (1996) Estrogen activates migration potential of endometrial cancer cells through basement membrane. Tumor Biol 17:48–57

    Article  CAS  Google Scholar 

  28. Fridman O, Gurpide E (1980) A method for the study of steady-state kinetics in cell suspensions. Evaluation of estrogen metabolism in HEC-1B cells. J Steroid Biochem 13:1379–1385

    Article  PubMed  CAS  Google Scholar 

  29. Castagnetta L, Granata OM, Casto ML et al. (1986) Estrone conversion rates by human endometrial cancer cell lines. J Steroid Biochem 25:803–809

    Article  PubMed  CAS  Google Scholar 

  30. Castagnatta LAM, Montesanti AM, Granata OM et al. (1995) 17 β-Hydroxysteroid dehydrogenase activity in endometrial cancer cells: Different metabolic pathways of estradiol in hormone-responsive and non-responsive intact cells. J Steroid Biochem Mol Biol 55:573–579

    Article  Google Scholar 

  31. Castagnetta LA, Granata OM, Taibi G et al. (1996) 17 β-Hydroxysteroid oxidoreductase activity in intact cells significantly differs from classical enzymology analysis. J Endocrinol 150:573–578

    Google Scholar 

  32. Nishida M, Kasahara K, Kaneko M et al. (1985) Establishment of a new human endometrial adenocarcinoma cell line, Ishikawa cells, containing estrogen and progesterone receptors. Acta Obstet Gynaecol Jpn 37:1103–1111

    CAS  Google Scholar 

  33. Holinka CF, Hata H, Kuramoto H et al. (1986) Responses to estradiol in human endometrial adenocarcinoma cell line (ISHIKAWA). J Steroid Biochem 24:85–89

    Article  PubMed  CAS  Google Scholar 

  34. Gravanis A, Gurpide E (1986) Effects of estradiol on deoxyribonucleic acid polymerase alpha activity in the Ishikawa human endometrial adenocarcinoma cell line. J Clin Endocrinol Metab 63:356–359

    Article  PubMed  CAS  Google Scholar 

  35. Holinka CF, Hata H, Gravanis A et al. (1986) Effects of estradiol on proliferation of endometrial adenocarcinoma cells (Ishikawa line). J Steroid Biochem 25:781–786

    Article  PubMed  CAS  Google Scholar 

  36. Holinka CF, Hata H, Kuramoto H et al. (1986) Effects of steroid hormones and antisteroids on alkaline phosphatase activity in human endometrial cancer cells (Ishikawa line). Cancer Res 46:2771–2774

    PubMed  CAS  Google Scholar 

  37. Hata H, Holinka CF, Pahuja SL et al. (1987) Estradiol metabolism in Ishikawa endometrial cancer cells. J Steroid Biochem 26:699–704

    Article  PubMed  CAS  Google Scholar 

  38. Anzai Y, Holinka CF, Kuramoto H et al. (1989) Stimulatory effects of 4-hydroxytamoxifen on proliferation of human endometrial adenocarcinoma cells (Ishikawa line). Cancer Res 49:2362–2365

    PubMed  CAS  Google Scholar 

  39. Holinka CF, Anzai Y, Hata H et al. (1989) Proliferation and responsiveness to estrogen of human endometrial cancer cells under serum-free culture conditions. Cancer Res 49:3297–3301

    PubMed  CAS  Google Scholar 

  40. Hata H, Kuramoto H (1992) Immunocytochemical determination of estrogen and progesterone receptors in human endometrial adenocarcinoma cells (Ishikawa cells). J Steroid Biochem Mol Biol 42:201–210

    Article  PubMed  CAS  Google Scholar 

  41. Tada A, Sasaki H, Nakamura J et al. (1993) Aromatase activity and the effect of estradiol and testosterone on DNA synthesis in endometrial carcinoma cell lines. J Steroid Biochem Mol Biol 44:661–666

    Article  PubMed  CAS  Google Scholar 

  42. Ahmed A, Shoaibi MA, Plevin R et al. (1995) Oestradiol-17β modulates PAF-evoked phospholipase D activity but not inositide-lipid hydrolysis in human endometrial cell line, HEC-1B. Cell Signal 7:403–409

    Article  PubMed  CAS  Google Scholar 

  43. Kuramoto H, Suzuki K (1976) Effects of progesterone on the growth kinetics and the morphology of a human endometrial cancer cell-line. Acta Obstet Gynaecol Jpn 23:123–132

    PubMed  CAS  Google Scholar 

  44. Suzuki M, Kuramoto H, Hamano M et al. (1980) Effects of oestradiol and progesterone on the alkaline phosphatase activity of a human endometrial cancer cell-line. Acta Endocrinol 93:108–113

    PubMed  CAS  Google Scholar 

  45. Suzuki M, Kuramoto H, Izumi S et al. (1981) Cyclic changes of alkaline phosphatase in the human endometrium: Histochemical and biochemical analyses. Acta Histochem Cytochem 14:524–533

    Article  CAS  Google Scholar 

  46. Suzuki M, Kuramoto H, Hamano M et al. (1979) Effects of steroid hormones on the alkaline phosphatase activity of cultured corpus cancer cells. Acta Obstet Gynaecol Jpn 31:577–582

    Google Scholar 

  47. Suzuki M, Kuramoto H, Hamano M et al. (1979) The nature of alkaline phosphatase of the endometrium and cultured endometrial cancer cells. Acta Obstet Gynaecol Jpn 31:2132–2136

    Google Scholar 

  48. Kuramoto H, Kato Y, Hata H et al. (1989) Role of in vitro cell system in the study on hormone and endometrial carcinoma. Obstet Gynecol Ther 58:231–236 (in Japanese)

    Google Scholar 

  49. Kuramoto H (1988) Cell culture: Its application in the study of hormone and endometrial carcinoma and feedback to clinical medicine. Acta Obstet Gynaecol Jpn 40: 1050–1055

    CAS  Google Scholar 

  50. Satyaswaroop PG, Frost A, Gurpide E (1980) Metabolism and effects of progesterone in the human endometrial adenocarcinoma cell line HEC-1. Steroids 35:21–37

    Article  PubMed  CAS  Google Scholar 

  51. Sekiya S, Takamizawa H (1981) Effect of anticancer drugs on in vitro survival of cell lines derived from various gynecologic tumors. Acta Obstet Gynecol Jpn 33:373–376

    CAS  Google Scholar 

  52. Grenman SE, Roberts JA, England BG et al. (1988) In vitro growth regulation of endometrial carcinoma cells by tamoxifen and medroxyprogesterone acetate. Gynecol Oncol 30:239–250

    Article  PubMed  CAS  Google Scholar 

  53. Kato Y, Morisawa T, Kuramoto H (1991) Growth regulation of sex steroid hormone in endometrial carcinoma transplanted into nude mice. Hum Cell 4:165–170

    PubMed  CAS  Google Scholar 

  54. Katsuki Y, Shibutani Y, Aoki D et al. (1997) Dienogest, a novel synthetic steroid, overcomes hormone-dependent cancer in a different manner than progestins. Cancer 79:169–176

    Article  PubMed  CAS  Google Scholar 

  55. Forsman LM (1987) An apocrine membrane antigen with polarized distribution and hormonally regulated expression in human endometrial and mammary carcinoma cell lines. Acta Pathol Microbiol Immunol Scand 95:315–323

    CAS  Google Scholar 

  56. Hochner-Celnikier D, Greenfield C, Finci-Yeheskel Z et al. (1997) Tamoxifen exerts oestrogen-agonistic effects on proliferation and plasminogen activation, but not on gelatinase activity, glycogen metabolism and p53 protein expression, in cultures of oestrogen-responsive human endometrial adenocarcinoma cells. Mol Hum Reprod 3:1019–1027

    Article  PubMed  CAS  Google Scholar 

  57. Emons G, Schröder B, Ortmann O et al. (1993) High affinity binding and direct antiproliferative effects of luteinizing hormone-releasing hormone analogs in human endometrial cancer cell lines. J Clin Endocrinol Metab 77:1458–1464

    Article  PubMed  CAS  Google Scholar 

  58. Irmer G, Bürger C, Ortmann O et al. (1994) Expression of luteinizing hormone and its mRNA in human endometrial cancer cell lines. J Clin Endocrinol Metab 79:916–919

    Article  PubMed  CAS  Google Scholar 

  59. Griindker C, Völker P, Emons G (2001) Antiproliferative signaling of luteinizing hormone-releasing hormone in human endometrial and ovarian cancer cells through G protein αl-mediated activation of phosphotyrosine phosphatase. Endocrinology 142:2369–2380

    Article  Google Scholar 

  60. Griindker C, Schlotawa L, Viereck V et al. (2001) Protein kinase C-independent stimulation of activator protein-1 and c-Jun N-terminal kinase activity in human endometrial cancer cells by the LHRH agonist triptorelin. Eur J Endocrinol 145:651–658

    Article  Google Scholar 

  61. Chatzaki E, Bax CMR, Eidne KA et al. (1996) The expression of gonadotropinreleasing hormone and its receptor in endometrial cancer, and its relevance as an autocrine growth factor. Cancer Res 56:2059–2065

    PubMed  CAS  Google Scholar 

  62. Kleinman D, Douvdevani A, Schally AV et al. (1994) Direct growth inhibition of human endometrial cancer cells by the gonadotropin-releasing hormone antagonist SB-75: Role of apoptosis. Am J Obstet Gynecol 70:96–102

    Google Scholar 

  63. Westphalen S, Kotulla G, Kaiser F et al. (2000) Receptor mediated antiproliferative effects of the cytotoxic LHRH agonist AN-152 in human ovarian and endometrial cancer cell lines. Int J Oncol 17:1063–1069

    PubMed  CAS  Google Scholar 

  64. Davies S, Bax CMR, Chatzaki E et al. (2000) Regulation of endometrial cancer cell growth by luteinizing hormone (LH) and follicle stimulating hormone (FSH). Br J Cancer 83:1730–1734

    Article  PubMed  CAS  Google Scholar 

  65. Yamamoto T, Kitawaki J, Urabe M et al. (1993) Estrogen productivity of endometrium and endometrial cancer tissue: Influence of aromatase on proliferation of endometrial cancer cells. J Steroid Biochem Mol Biol 44:463–468

    Article  PubMed  CAS  Google Scholar 

  66. Pearl ML, Talavera F, Gretz HF III et al. (1993) Mitogenic activity of growth factors in the human endometrial adenocarcinoma cell lines HEC-l-A and KLE. Gynecol Oncol 49:325–332

    Article  PubMed  CAS  Google Scholar 

  67. Conner P, Talavera F, Kang J et al. (1997) Epidermal growth factor activates protein kinase C in the human endometrial cancer cell line HEC-l-A. Gynecol Oncol 67:46–50

    Article  Google Scholar 

  68. Reynolds RK, Hu C, Baker VV (1998) Transforming growth factor-a and insulin-like growth factor-I, but not epidermal growth factor, elicit autocrine stimulation of mitogenesis in endometrial cancer cell lines. Gynecol Oncol 70:202–209

    Article  PubMed  CAS  Google Scholar 

  69. Burke JJ, Talavera F, Menon KMJ (1997) Regulation of PTPID mRNA by peptide growth factors in human endometrial cell line HEC-l-A. J Soc Gynecol Invest 4:310–315

    Article  CAS  Google Scholar 

  70. Lelle RJ, Talavera F, Gretz H et al. (1993) Epidermal growth factor receptor expression in three different human endometrial cancer cell lines. Cancer 72:519–525

    Article  PubMed  CAS  Google Scholar 

  71. Watson H, Franks S, Bonney RC (1994) The epidermal growth factor receptor in the human endometrial adenocarcinoma cell line HEC-l-B. J Steroid Biochem Mol Biol 51:41–45

    Article  PubMed  CAS  Google Scholar 

  72. Lamson G, Oh Y, Pham H et al. (1989) Expression of two insulin-like growth factorbinding proteins in a human endometrial cancer cell line: Structural, immnological, and genetic characterization. J Clin Endocrinol Metab 69:852–859

    Article  PubMed  CAS  Google Scholar 

  73. Pekonen F, Nyman T, Rutanen EM (1991) Human endometrial adenocarcinoma cell lines HEC IB and KLE secrete insulin-like growth factor binding protein-1 and contain IGF-1 receptors. Mol Cell Endocrinol 75:81–87

    Article  PubMed  CAS  Google Scholar 

  74. Koistinen R, Angervo M, Leinonen P et al. (1993) Phosphorylation of insulinlike growth factor-binding protein-1 from different sources. Growth Regul 3:34–37

    PubMed  CAS  Google Scholar 

  75. Camacho-Hubner C, McCusker RH, Clemmons DR (1991) Secretion and biological actions of insulin-like growth factor binding proteins in two human tumor-derived cell lines in vitro. J Cell Physiol 148:281–289

    Article  PubMed  CAS  Google Scholar 

  76. Gao J, Tseng L (1997) Progesterone receptor (PR) inhibits expression of insulin-like growth factor-binding protein-1 (IGFBP-1) in human endometrial cell line HEC-1B: Characterization of the inhibitory effect of PR on the distal promoter region of the IGFBP-1 gene. Mol Endocrinol 11:973–979

    Article  PubMed  CAS  Google Scholar 

  77. Gong Y, Ballejo G, Alkhalaf B et al. (1992) Phorbol esters differentially regulate the expression of insulin-like growth factor-binding proteins in endometrial carcinoma cells. Endocrinology 131:2747–2754

    Article  PubMed  CAS  Google Scholar 

  78. Talavera F, Bergman C, Pearl ML et al. (1995) cAMP and PMA enhance the effects of IGF-I in the proliferation of endometrial adenocarcinoma cell line HEC-l-A by acting at the Gl phase of the cell cycle. Cell Prolif 28:121–136

    Article  PubMed  CAS  Google Scholar 

  79. Gao JG, Mazella J, Powell DR et al. (1994) Identification of a distal regulatory sequence of the human IGFBP-1 gene promoter and regulation by the progesterone receptor in a human endometrial adenocarcinoma cell line. DNA Cell Biol 13:829–837

    Article  PubMed  CAS  Google Scholar 

  80. Boyd JA, Kaufman DG (1990) Expression of transforming growth factor βl by human endometrial carcinoma cell lines: Inverse correlation with effects on growth rate and morphology. Cancer Res 50:3394–3399

    PubMed  CAS  Google Scholar 

  81. Gong Y, Murphy LC, Murphy LJ (1994) Hormonal regulation of proliferation and transforming growth factors gene expression in human endometrial adenocarcinoma xenografts. J Steroid Biochem Mol Biol 50:13–19

    Article  PubMed  CAS  Google Scholar 

  82. Bergman CA, Talavera F, Christman GM et al. (1997) Transforming growth factor-β negatively modulates proliferation and c-fos expression of the human endometrial adenocarcinoma cell line HEC-l-A. Gynecol Oncol 65:63–68

    Article  PubMed  CAS  Google Scholar 

  83. Gong Y, Anzai Y, Murphy LC et al. (1991) Transforming growth factor gene expression in human endometrial adenocarcinoma cells: Regulation by progestins. Cancer Res 51:5476–5481

    PubMed  CAS  Google Scholar 

  84. Murphy LJ, Gong Y, Murphy LC (1992) Regulation of transforming growth factor gene expression in human endometrial adenocarcinoma cells. J Steroid Biochem Mol Biol 41:309–314

    Article  PubMed  CAS  Google Scholar 

  85. Gong Y, Ballejo G, Murphy LC (1992) Differential effects of estrogen and antiestrogens on transforming growth factor gene expression in endometrial adenocarcinoma cells. Cancer Res 52:1704–1709

    PubMed  CAS  Google Scholar 

  86. Hata H, Hamano M, Watanabe J et al. (1998) Role of estrogen and estrogen-related growth factor in the mechanism of hormone dependency of endometrial carcinoma cells. Oncology 55 (Suppl 1):35–44

    Article  PubMed  CAS  Google Scholar 

  87. Maggi M, Bonaccorsi L, Finetti G et al. (1994) Platelet-activating factor mediates an autocrine proliferative loop in the endometrial adenocarcinoma cell line HEC-1A. Cancer Res 54:4777–4784

    PubMed  CAS  Google Scholar 

  88. Ahmed A, Sage SO, Plevin R et al. (1994) Functional platelet-activating factor receptors linked to inositol lipid hydrolysis, calcium mobilization and tyrosine kinase activity in human endometrial HEC-1B cell line. J Reprod Fertil 101:459–466

    Article  PubMed  CAS  Google Scholar 

  89. Dearn S, Rahman M, Lewis A et al. (2000) Activation of platelet-activating factor (PAF) receptor stimulates nitric oxide (NO) release via protein kinase C-α in HEC-1B human endometrial epithelial cell line. Mol Med 6:37–49

    PubMed  CAS  Google Scholar 

  90. Munir I, Fukunaga K, Miyazaki K et al. (1999) Mitogen-activated protein kinase activation and regulation of cyclooxygenase 2 expression by platelet-activating factor and hCG in human endometrial adenocarcinoma cell line HEC-1B. J Reprod Fertil 117:49–59

    Article  PubMed  CAS  Google Scholar 

  91. Bonaccorsi L, Luconi M, Maggi M et al. (1997) Protein tyrosine kinase, mitogenactivated protein kinase and protein kinase C are involved in the mitogenic signaling of platelet-activating factor (PAF) in HEC-1A cells. Biochem Biophys Acta 1355: 155–166

    Article  PubMed  CAS  Google Scholar 

  92. Giannini S, Maggi M, Cresci B et al. (1996) Platelet-activating factor enhances production of insulin-like growth factor binding proteins in a human adenocarcinoma cell line (HEC-1A). Gynecol Oncol 61:333–340

    Article  PubMed  CAS  Google Scholar 

  93. Peri A, Bonaccorsi L, Muratori M et al. (2000) Uteroglobin reverts the transformed phenotype in the endometrial adenocarcinoma cell line HEC-1A by disrupting the metabolic pathways generating platelet-activating factor. Int J Cancer 88:525–534

    Article  PubMed  CAS  Google Scholar 

  94. Presta M (1988) Sex hormones modulate the synthesis of basic fibroblast growth factor in human endometrial adenocarcinoma cells: implications for the neovascularization on normal and neoplastic endometrium. J Cell Physiol 137:593–597

    Article  PubMed  CAS  Google Scholar 

  95. Coltrini D, Gualandris A, Nelli EE et al. (1995) Growth advantage and vascularization induced by basic fibroblast growth factor overexpression in endometrial HEC-l-B cells: An export-dependent mechanism of action. Cancer Res 55:4729–4738

    PubMed  CAS  Google Scholar 

  96. Presta M, Maier JA, Rusnati M et al. (1988) Modulation of plasminogen activator activity in human endometrial adenocarcinoma cells by basic fibroblast growth factor and transforming growth factor beta. Cancer Res 48:6384–6389

    PubMed  CAS  Google Scholar 

  97. Charnock-Jones DS, Sharkey AM, Rajput-Williams J et al. (1993) Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod 48:1120–1128

    Article  PubMed  CAS  Google Scholar 

  98. Yanase T, Tamura M, Fujita K et al. (1993) Inhibitory effect of angiogenesis inhibitor TNF-470 on tumor growth and metastasis of human cell lines in vitro and in vivo. Cancer Res 53:2566–2570

    PubMed  CAS  Google Scholar 

  99. Pekonen F, Saijonmaa O, Nyman T et al. (1992) Human endometrial adenocarcinoma cells express endothelin-1. Mol Cell Endocrinol 84:203–207

    Article  PubMed  CAS  Google Scholar 

  100. Bamberger A, Erdmann I, Jenatschke S et al. (1997) Regulation of the human leukaemia inhibitory factor (LIF) promoter in HEC-1B endometrial adenocarcinoma cells. Mol Hum Reprod 3:789–793

    Article  PubMed  CAS  Google Scholar 

  101. Yoshida S, Harada T, Iwabe T et al. (2002) Induction of hepatocyte growth factor in stromal cells by tumor-derived basic fibroblast growth factor enhances growth and invasion of endometrial cancer. J Clin Endocrinol Metab 87:2376–2383

    Article  PubMed  CAS  Google Scholar 

  102. Gong Y, Alkhalaf B, Murphy LJ et al. (1992) Differential effects of phorbol esters on proliferation and calcyclin expression in human endometrial carcinoma cells. Cell Growth Differ 3:847–853

    PubMed  CAS  Google Scholar 

  103. Munir I, Fukunaga K, Kanasaki H et al. (2000) Expression of cyclooxygenase 2 by prostaglandin E2 in human endometrial adenocarcinoma cell line HEC-1B. Biol Reprod 63:933–941

    Article  PubMed  CAS  Google Scholar 

  104. Katzur AC, Kishimizu T, Tomic M et al. (1999) Expression and responsiveness of P2Y2 receptors in human endometrial cancer cell lines. J Clin Endocrinol Metab 84: 4085–4091

    Article  PubMed  CAS  Google Scholar 

  105. Moser C, Bernhardt G, Michel J et al. (2000) Cloning and functional expression of the hNPY Y5 receptor in human endometrial cancer (HEC-1B) cells. Can J Physiol Pharmacol 78:134–142

    PubMed  CAS  Google Scholar 

  106. Bischoff A, Püttmann K, Kötting A et al. (2001) Limited signal transduction repertoire of human Y5 reuropeptide Y receptors expressed in HEC-1B cells. Peptides 22:387–394

    Article  PubMed  CAS  Google Scholar 

  107. Morishita K, Parganas E, Douglass EC et al. (1990) Unique expression of the human Evi-1 gene in an endometrial carcinoma cell line: sequence of cDNAs and structure of alternatively spliced transcripts. Oncogene 5:963–971

    PubMed  CAS  Google Scholar 

  108. Boyd J, Risinger JI (1991) Analysis of oncogene alterations in human endometrial carcinoma: Prevalence of ras mutations. Mol Carcinog 4:189–195

    Article  PubMed  CAS  Google Scholar 

  109. Yaginuma Y, Westphal H (1991) Analysis of the p53 gene in human uterine carcinoma cell lines. Cancer Res 51:6506–6509

    PubMed  CAS  Google Scholar 

  110. Smith JK, Yeh G (1992) Telomere reduction in endometrial adenocarcinoma. Am J Obstet Gynecol 167:1883–1887

    PubMed  CAS  Google Scholar 

  111. Bui TD, Zhang L, Rees MCP et al. (1997) Expression and hormone regulation of Wnt 2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer 75:1131–1136

    Article  PubMed  CAS  Google Scholar 

  112. Kato T, Yatagai F, Glickman BW et al. (1998) Specificity of mutations in the PMS2-deficient human tumor cell line HEC-1A. Mutat Res 422:279–283

    Article  PubMed  CAS  Google Scholar 

  113. Risinger JI, Umar A, Glaab WE et al. (1998) Single gene complementation of the hPMS2 defect in HEC-l-A endometrial carcinoma cells. Cancer Res 58:2978–2981

    PubMed  CAS  Google Scholar 

  114. Matsushima-Nishiu M, Unoki M, Ono K et al. (2001) Growth and gene expression profile analysis of endometrial cancer cells expressing exogenous PTEN. Cancer Res 61:3741–3749

    PubMed  CAS  Google Scholar 

  115. Lilja JF, Wu D, Reynolds RK et al. (2001) Growth suppression activity of the PTEN tumor suppressor gene in human endometrial cancer cells. Anticancer Res 21: 1969–1974

    PubMed  CAS  Google Scholar 

  116. Unoki M, Nakamura Y (2001) Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 20:4457–4465

    Article  PubMed  CAS  Google Scholar 

  117. Watanabe J, Sato H, Kanai T et al. (2002) Paradoxical expression of cell cycle inhibitor p27 in endometrioid adenocarcinoma of the uterine corpus. Br J Cancer 87:81–85

    Article  PubMed  CAS  Google Scholar 

  118. Alkhalaf M, Murphy LJ, Murphy LC (1993) Enhanced c-jun activity alters responsiveness to medroxyprogesterone acetate in Ishikawa human endometrial carcinoma cells. Mol Endocrinol 7:1634–1641

    Article  PubMed  CAS  Google Scholar 

  119. Chin T, Parry RL, Donahoe PK (1991) Human Müllerian inhibiting substance inhibits tumor growth in vitro and in vivo. Cancer Res 51:2101–2106

    PubMed  CAS  Google Scholar 

  120. Rosenwaks Z, Liu HC, Jones HW et al. (1981) In vitro inhibition of endometrial cancer growth by a neonatal rat testicular secretory product. J Clin Endocrinol Metab 52:817–819

    Article  PubMed  CAS  Google Scholar 

  121. Rosenwaks Z, Liu HC, Picard JY et al. (1984) Anti-Müllerian hormone is not cytotoxic to human endometrial cancer in tissue culture. J Clin Endocrinol Metab 59:166–169

    Article  PubMed  CAS  Google Scholar 

  122. Hopfer H, Rinehart CA Jr, Kaufman DG et al. (1996) Basement membrane induced differentiation of HEC-IB(L) endometrial adenocarcinoma cells affects both morphology and gene expression. Biochem Cell Biol 74:165–177

    Article  PubMed  CAS  Google Scholar 

  123. Behrens P, Meiβner C, Hopfer H et al. (1996) Laminin mediates basement membrane induced differentiation of HEC IB endometrial adenocarcinoma cells. Biochem Cell Biol 74:875–886

    Article  PubMed  CAS  Google Scholar 

  124. Tan MI, Strunk E, Scholzen T et al. (1999) Extracellular matrix regulates steady-state mRNA levels of proliferation associated protein Ki-67 in endometrial cancer cells. Cancer Lett 140:145–152

    Article  PubMed  CAS  Google Scholar 

  125. Park D, Ryu H, Choi D et al. (2001) Localization of matrix metalloproteinases on endometrial cancer cell invasion in vitro. Gynecol Oncol 82:442–449

    Article  PubMed  CAS  Google Scholar 

  126. Sillem M, Prifti S, Koumouridis A et al. (1999) Invasiveness corresponds to differentiation rather than to proteinase secretion in endometrial cancer cell lines. Eur J Gynaecol Oncol 20:367–370

    PubMed  CAS  Google Scholar 

  127. Prifti S, Zourab Y, Koumouridis A et al. (2002) Role of integrins in invasion of endometrial cancer cell lines. Gynecol Oncol 84:12–20

    Article  PubMed  Google Scholar 

  128. Struck E, Vollmer G (1996) Variants of integrin β 4 subunit in human endometrial adenocarcinoma cells: mediators of ECM-induced differentiation? Biochem Cell Biol 74:867–873

    Article  Google Scholar 

  129. Vollmer G, Tan MI, Wünsche W et al. (1997) Expression of tenascin-C by human endometrial adenocarcinoma and stroma cells: Heterogeneity of splice variants and induction by TGF-β. Biochem Cell Biol 75:759–769

    Article  PubMed  CAS  Google Scholar 

  130. Struck E, Hopert AC, Vollmer G (1996) Basement membrane regulates gene expression in HECIB(L) endometrial adenocarcinoma cells. Biochem Biophys Res Commun 221:346–350

    Article  Google Scholar 

  131. Treeck O, Struck E, Vollmer G (1998) A novel basement membrane gene identified in the human endometrial adenocarcinoma cell line HEC1B. FEBS Lett 425:426–430

    Article  PubMed  CAS  Google Scholar 

  132. Hiramatsu HP, Kikuchi Y, Seto H et al. (2000) In vitro sensitivity of human endometrial cancer cell lines to paclitaxel or irinotecan (CPT-11) in combination with other anticancer drugs. Anticancer Drugs 11:573–578

    Article  PubMed  CAS  Google Scholar 

  133. Stournaras C, Stiakaki E, Koukouritaki SB et al. (1996) Altered actin polymerization dynamics in various malignant cell types: Evidence for differential sensitivity to cytochalasin B. Biochem Pharmacol 52:1339–1346

    Article  PubMed  CAS  Google Scholar 

  134. Raab GH, Schneider AF, Eiermann W et al. (1990) Response of human endometrium and ovarian carcinoma cell-lines to photodynamic therapy. Arch Gynecol Obstet 248:13–20

    Article  PubMed  CAS  Google Scholar 

  135. Chen HY, Sato T, Fuse A et al. (1981) Resistance to interferon of a human adenocarcinoma cell line, HEC-1 and its sensitivity to natural killer cell action. J Gen Virol 52:177–181

    Article  PubMed  CAS  Google Scholar 

  136. Verhaegen M, Divizia M, Vandenbussche P et al. (1980) Abnormal behavior of interferon-induced enzymatic activities in an interferon-resistant cell line. Proc Natl Acad Sci USA 77:4497–4483

    Article  Google Scholar 

  137. Morinaga N, Yonehara S, Tomita Y et al. (1983) Insensitivity to interferon of two subclones of human endometrial carcinoma cell line, HEC-1. Int J Cancer 31:21–28

    Article  PubMed  CAS  Google Scholar 

  138. Fuse A, Mahmud I, Kuwata T (1982) Mechanism of stimulation by human interferon of prostaglandin synthesis in human cell lines. Cancer Res 42:3209–3214

    PubMed  CAS  Google Scholar 

  139. Verhaegen-Lewalle M, Content J (1982) 2'-Phosphodiesterase activity in human cell lines treated or untreated with human interferon. Eur J Biochem 126:639–643

    Article  PubMed  CAS  Google Scholar 

  140. Yonehara S, Yonehara-Takahashi M, Ishii A (1983) Binding of human interferon alpha to cells of different sensitivities: Studies with internally radiolabeled interferon retaining full biological activity. J Virol 45:1168–1171

    PubMed  CAS  Google Scholar 

  141. Suzuki N, Kojima T, Kuwata T et al. (1984) Cross-sensitivity between interferon and uv in human cell strains: IFr, HEC-1 and CRL1200. Virology 135:20–29

    Article  PubMed  CAS  Google Scholar 

  142. Suzuki N, Oiwa Y, Sugano I et al. (1992) Dipyridamole enhances an anti-proliferative effect of interferon in various types of human tumor cells. Int J Cancer 51:627–633

    Article  PubMed  CAS  Google Scholar 

  143. Rossiello F, Nardone FC, Dell’Acqua S (1994) Interferon-β increases the sensitivity of endometrial cancer cells to cell-mediated cytotoxicity. Gynecol Oncol 54:130–136

    Article  PubMed  CAS  Google Scholar 

  144. Chen JC, Bavoil P, Clark VL (1991) Enhancement of the invasive ability of Neisseria gonorrhoeae by contact with Hecl B, an adenocarcinoma endometrial cell line. Mol Microbiol 5:1531–1538

    Article  PubMed  CAS  Google Scholar 

  145. Simon D, Rest RF (1992) Escherichia coli expressing a Neisseria gonorrhoeae opacityassociated outer membrane protein invade human cervical and endometrial epithelial cell lines. Proc Natl Acad Sci USA 89:5122–5516

    Google Scholar 

  146. Griffiss JM, Lammel CJ, Wang J et al. (1999) Neisseria gonorrhoeae coordinately uses pili and opa to activate HEC-1-B cell microvilli, which causes engulfment of the gonococci. Infect Immun 67:3469–3480

    PubMed  CAS  Google Scholar 

  147. Minor SY, Banerjee A, Gotschlich EC (2000) Effect of α-oligosaccharide phenotype of Neisseria gonorrhoeae strain MS11 on invasion of chang conjunctival, HEC-1-B endometrial, and ME-180 cervical cells. Infect Immun 68:6526–6534

    Article  PubMed  CAS  Google Scholar 

  148. Schmiel DH, Knight ST, Raulston JE et al. (1991) Recombinant Escherichia coli clones expressing Chlamydia trachomatis gene products attach to human endometrial epithelial cells. Infect Immun 59:4001–4012

    PubMed  CAS  Google Scholar 

  149. Schramm N, Bagnell CR, Wyrick PB (1996) Vesicles containing Chlamydia trachomatis serovar L2 remain above pH6 within HEC-IB cells. Infect Immun 64:1208–1214

    PubMed  CAS  Google Scholar 

  150. Lammel CJ, Dekker NP, Palefsky J et al. (1993) In vitro model of Haemophilus ducreyi adherence to and entry into eukaryotic cells of genital origin. J Infect Dis 167:642–650

    Article  PubMed  CAS  Google Scholar 

  151. Ficher LJ, Quinn FD, White EH et al. (1996) Intracellular growth and cytotoxicity of Mycobacterium haemophilum in a human epithelial cell line (Hec-1-B). Infect Immun 64:269–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Kuramoto, H. et al. (2003). HEC-1 Cells: Establishment of an In Vitro Experimental System in Endometrial Carcinoma. In: Kuramoto, H., Nishida, M. (eds) Cell and Molecular Biology of Endometrial Carcinoma. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53981-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53981-0_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67977-6

  • Online ISBN: 978-4-431-53981-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics