Skip to main content

Architectures for Adaptive Behavior in Biomimetic Underwater Robots

  • Conference paper
Bio-mechanisms of Swimming and Flying

Abstract

We are applying a conserved neurophysiological model to the control of behavior in fieldable underwater robots. The model is based on command neurons, coordinating neurons, central pattern generators and exteroceptive reflexes. We discuss implementations using finite state machines as well as electronic neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ayers, J. L. and W. J. Davis (1977). “Neuronal Control of Locomotion In The Lobster, Homarus Americanus tor Programs for Forward and Backward Walking.” Journal of Comparative Physiology. A 115: 1-27. Ayers, J., Witting, J., McGruer, N., Olcott, C., Massa, D. (2000) Lobster Robots. In: Proceedings of the First International Symposium on Aqua Biomecha-nisms, The Study Group of Aqua Bio-Mechanisms Ayers, J., Davis, J. and Rudolph, A. (2002). Neurotechnology for Biomimetic Robots. Cambridge, MIT Press.

    Google Scholar 

  • Ayers, J. (2002). A conservative biomimetic control architecture for autonomous underwater robots. Neurotechnology for Biomimetic Robots. J. Ayers, Davis, J. and Rudolph, A. Cambridge, MA, MIT Press: 234-252.

    Google Scholar 

  • Delcomyn, F. (1980). “Neural basis of rhythmic behavior in animals.” Science 210: 492-498.

    Article  PubMed  CAS  Google Scholar 

  • Factor, J. R. (1995). Biology of the Lobster, Homarus americanus, Academic Press.

    Google Scholar 

  • Grillner, S. and. P. Wallen. (2002). “Cellular bases of a vertebrate locomotor system — steering, intersegmental and segmental co-ordination and sensory control.” Brain Res. Rev 40: 92-106.

    Article  PubMed  Google Scholar 

  • Harris-Warrick R. M. E. Marder, A. S., M. Moulin, Ed. (1992). Dynamic Biological Networks: The Stomatogastric Nervous System. Computational Neuroscience. Cambridge, MIT Press.

    Google Scholar 

  • Kennedy, D. and W. J. Davis (1977). Organization of invertebrate motor systems. Handbook of Physiology. S. Geiger, E. Kandel and J. M. Brookhart. Be-thesda Md, American Physiology Society. 1: 1023-1087.

    Google Scholar 

  • Larimer, J. L. and R. F. Bowerman (1974). “Command fibres in the circumoe-sophageal connectives of crayfish II. Phasic fibres.” J. Exp. Biol. 60: 119134.

    Google Scholar 

  • Libersat, F., F. Clarac and S. Zill (1987). “Force-sensitive mechanoreceptors on the dactyl of the crab: single unit responses during walking and evaluation of function.” J. Neurophsyiology 57: 1618-1637.

    CAS  Google Scholar 

  • Pinsker, H. M. and J. Ayers (1983). 9. Neuronal Oscillators. The Clinical Neurosciences. W. D. Willis, Churchill Livingston New York. Vol. 5: 203-266.

    Google Scholar 

  • Pinto, R. D., P. Varona, A. Volkovskii, A. Szucs, H. D. I. Abarbanel and M. I. Rabinovich (2000). “Synchronous Behavior of two coupled electronic neurons.” Phys. Rev. E. 62: 2644-2656.

    Article  CAS  Google Scholar 

  • Sandeman, D. C. & H. L. Atwood, Ed. (1982). Neurobiology: Neural Integration and Behavior. The Biology of Crustacea. New York, Academic Press.

    Google Scholar 

  • Stein, P. S. G. (1978). “Motor Systems, with specific reference to the control of locomotion.” Ann. Rev. Neurosci. 1:61-81.

    Article  PubMed  CAS  Google Scholar 

  • Wiese, K., W. D. Krenz, J. Tautz, H. Reichert & B. Mulloney, Ed. (1990). Frontiers in Crustacean Neurobiology. Basel, Birkhauser Verlag.

    Google Scholar 

  • Witting, J. and Safak, K. (2002) Shape Memory Alloy Actuators Applied To Biomimetic Underwater Robots. In: Neurotechnology for Biomimetic Robots. J. Ayers, J. Davis and A. Rudolph [eds]. MIT Press, Pp. 117-135 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Japan

About this paper

Cite this paper

Ayers, J. (2004). Architectures for Adaptive Behavior in Biomimetic Underwater Robots. In: Kato, N., Ayers, J., Morikawa, H. (eds) Bio-mechanisms of Swimming and Flying. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53951-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53951-3_13

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67963-9

  • Online ISBN: 978-4-431-53951-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics