Skip to main content

An Engineering Perspective on Swimming Bacteria:High-Speed Flagellar Motor, Intelligent Flagellar Filaments, and Skillful Swimming in Viscous Environments

  • Conference paper
Bio-mechanisms of Swimming and Flying

Abstract

Many bacteria swim by rotating their helical flagellar filaments which are driven by flagellar motors embedded in the cell membranes. In mechanical engineering, bacterial swimming is an interesting subtopic of robotics and nano-mechanics since countless nano-machines made of bio-molecules are packed into 1 µm cells. In this paper, we present three exceptionally interesting facts about swimming bacteria, which have been known for the past decade. First, a flagellar motor rotates extremely fast (the maximum recorded is 1,700 rps). This information produces many new questions regarding, for example, the torque generation mechanism and the wear. The second fact concerns the flagellar filament as an intelligent material. It is sufficiently rigid for a use as a propeller and yet can change its helical form to relax the stress when an excessive force acts on it. The mechanism is now being explored at an atomic level. The last fact is that bacterial cells sometimes swim well in viscous environments. This phenomenon contradicts common knowledge but could be explained by a new hypothesis in which the effect of the polymer network on the bacterial motion was expressed mathematically. We were impressed by the acumen of bacteria. (Review)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asakura S (1970) Polymerization of flagellin and polymorphism of flagella, Advance in Biophysics (Japan) 1:99–155.

    CAS  Google Scholar 

  • Berg HC (2003) The rotary motor of bacterial flagella, Annu Rev Biochem 72:1954.

    Article  Google Scholar 

  • Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments, Nature 245:380–382.

    Article  PubMed  CAS  Google Scholar 

  • Berg HC, Turner L (1979) Movement of microorganisms in viscous environments, Nature 278:349–351.

    Article  PubMed  CAS  Google Scholar 

  • Berry RM, Armitage JP (1999) The bacterial flagellar motor, Advances in Microbial Physiology 41:291–337.

    Article  PubMed  CAS  Google Scholar 

  • Calladine CR (1975) Construction of bacterial flagella, Nature 225:121–124.

    Article  Google Scholar 

  • Calladine CR (1976) Design requirements for the construction of bacterial flagella, J Theor Biol 57:469–489.

    Article  PubMed  CAS  Google Scholar 

  • Calladine CR (1978) Change of waveform in bacterial flagella: The role of mechanics at the molecular level, J Mol Biol 118:457–479.

    Article  CAS  Google Scholar 

  • Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa, J Exp Biol 32:802–814.

    Google Scholar 

  • Greenberg EP, Canale-Parola E (1977a) Relationship between cell coiling and motility of spirochetes in viscous environments, J Bacterid 131:960–969.

    CAS  Google Scholar 

  • Greenberg EP, Canale-Parola E (1977b) Motility of flagellated bacteria in viscous environments, J Bacterid 132:356–358.

    CAS  Google Scholar 

  • Hancock GJ (1953) The self-propulsion of microscopic organisms through liquids, Proceedings of Royal Society in London, A 217:96–121.

    Google Scholar 

  • Holwill MEJ, Burge RE (1963) A hydrodynamic study of the motility of flagellated bacteria, Arch Biochem Biophys 101:249–260.

    Article  PubMed  CAS  Google Scholar 

  • Hotani H (1982) Micro-video study of moving bacterial flagellar filaments III Cyclic transformation induced by mechanical force, J Mol Biol 156:791–806.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser GE, Doetsch RN (1975) Enhanced translational motion of Leptospira in viscous environments, Nature 255:656–657.

    Article  PubMed  CAS  Google Scholar 

  • Kamiya R, Asakura S (1976) Helical transformations of Salmonella flagella in vitro, J Mol Biol 106:167–186.

    Article  PubMed  CAS  Google Scholar 

  • Kamiya R, Asakura S (1977) Flagellar transformation at alkaline pH, J Mol Biol 108:513–518.

    Article  Google Scholar 

  • Kudo S, Magariyama M, Aizawa S-I (1990) Abrupt changes in flagellar rotation observed by laser dark-field microscopy, Nature 346:677–680.

    Article  PubMed  CAS  Google Scholar 

  • Lowe G, Meister M, Berg HC (1987) Rapid rotation of flagellar bundles in swimming bacteria, Nature 325:637–640.

    Article  Google Scholar 

  • Macnab RM, Ornston MK (1977) Normal-to-curly flagellar transitions and their role in bacteria, J Mol Biol 112:1–30.

    Article  PubMed  CAS  Google Scholar 

  • Magariyama Y, Kudo S (2002) A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions, Biophys J 83:733–739.

    Article  PubMed  CAS  Google Scholar 

  • Magariyama Y, Sugiyama S, Muramoto K, Maekawa Y, Kawagishi I, Imae Y, Kudo S (1994) Very fast flagellar rotation, Nature 371:752.

    Article  PubMed  CAS  Google Scholar 

  • Mimori Y, Yamashita I, Murata K, Fujiyoshi Y, Yonekura K, Toyoshima C, Namba K (1995) The structure of the R-type straight flagellar filament of Salmonella at 9 A resolution by electron cryomicroscopy, J Mol Biol 249:6987.

    Article  Google Scholar 

  • Mimori-Kiyosue Y, Vonderviszt F, Namba K (1997) Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism, J Mol Biol 270:222–237.

    Article  PubMed  CAS  Google Scholar 

  • Mimori-Kiyosue Y, Vonderviszt F, Yamashita I, Fujiyoshi Y, Namba K (1996) Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament, Proc Natl Acad Sci USA 93:15108–15113.

    Article  PubMed  CAS  Google Scholar 

  • Mimori-Kiyosue Y, Yamashita I, Fujiyoshi Y, Yamaguchi S, Namba K (1998) Role of the outermost subdomain of Salmonella flagellin in the filament structure revealed by electron cryomicroscopy, J Mol Biol 284:521–530.

    Article  PubMed  CAS  Google Scholar 

  • Morgan DG, Owen C, Melanson LA, DeRosier DJ (1995) Structure of bacterial flagellar filament at 11 A resolution: Packing of the a-helices, J Mol Biol 249:88–110.

    Article  PubMed  CAS  Google Scholar 

  • Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, Namba K (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling, Nature 410:331–337.

    Article  PubMed  CAS  Google Scholar 

  • Samatey FA, Imada K, Vonderviszt F, Shirakihara Y, Namba K (2000) Crystallization of the F41 fragment of flagellin and data collection from extremely thin crystals, J Struct Biol 132:106–111.

    Article  PubMed  CAS  Google Scholar 

  • Schneider WR, Doetsch RN (1974) Effect of viscosity on bacterial motility, J Bacteriol 117:691–701.

    Google Scholar 

  • Shoesmith JG (1960) The measurement of bacterial motility, J Gen Microbiol 22:528–535.

    Article  Google Scholar 

  • Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility, Nature 249:73–74.

    Article  PubMed  CAS  Google Scholar 

  • Strength WJ, Isami B, Linn DM, Williams FD, Vandermolen GE, Laughon BE, Krieg NR (1976) Isolation and characterization of Aquaspirillum fasciculus sp. Nov., a rod-shaped, nitrogen-fixing bacterium having unusual flagella, Int J Syst Bacteriol 26:253–268.

    Article  Google Scholar 

  • Yamashita I, Hasegawa K, Suzuki H, Vonderviszt F, Mimori-Kiyosue Y, Namba K (1988) Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction, Nature Struct Biol 5:125–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Japan

About this paper

Cite this paper

Magariyama, Y., Kudo, S., Goto, T., Takano, Y. (2004). An Engineering Perspective on Swimming Bacteria:High-Speed Flagellar Motor, Intelligent Flagellar Filaments, and Skillful Swimming in Viscous Environments. In: Kato, N., Ayers, J., Morikawa, H. (eds) Bio-mechanisms of Swimming and Flying. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53951-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53951-3_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67963-9

  • Online ISBN: 978-4-431-53951-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics