Adult Neurogenesis in Teleost Fish

  • Günther K. H. ZupancEmail author


Adult neurogenesis in the brain of teleost fish has been studied since the 1960s. These investigations have demonstrated mitotic activity in dozens of brain areas and relative rates of cell proliferation 10–100 times higher than in the adult mammalian brain. The source of the new cells are stem cells in distinct ­proliferation zones, which give rise to both neurons and glial cells. Depending on the brain region, the young cells either reside in close vicinity to the proliferation zone from which they originate, or they migrate long distance to specific target areas. During migration, they are guided by radial glial fibers. Approximately half the young cells undergo apoptotic cell death within the first few weeks of their life; the other half persist long term. This continuous addition of new cells to the population of older cells leads to a permanent growth of the brain. A major function of adult neurogenesis in teleosts appears to be to ensure numerical matching of neurons in the central nervous system and sensory receptors cells or muscle fibers in the periphery. Neurogenesis also plays a central role in brain repair by replacing cells lost to injury by newly generated ones. Large-scale identification of regeneration-associated proteins by proteome analysis has revealed cytoskeletal proteins essential for the formation of new cells, proteins involved in cell proliferation, cellular motility, neuroprotection, and energy metabolism, as well as a zinc finger protein that may act as a transcriptional regulator.


Granule Cell Olfactory Bulb Glutamine Synthetase Adult Neurogenesis Bullous Pemphigoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128PubMedCrossRefGoogle Scholar
  2. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis: IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458PubMedCrossRefGoogle Scholar
  3. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–336PubMedCrossRefGoogle Scholar
  4. Alvarez-Buylla A, Nottebohm F (1988) Migration of young neurons in adult avian brain. Nature 335:353–354CrossRefGoogle Scholar
  5. Anderson MJ, Waxman SG, Laufer M (1983) Fine structure of regenerated ependyma and spinal cord in Sternarchus albifrons. Anat Rec 205:73–83PubMedCrossRefGoogle Scholar
  6. Anderson MJ, Waxman SG, Lee Y-L, Eng LF (1987) Molecular differentiation of neurons from ependyma-derived cells in tissue cultures of regenerating teleost spinal cord. Mol Brain Res 2:131–136CrossRefGoogle Scholar
  7. Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17:915–925PubMedCrossRefGoogle Scholar
  8. Bédard A, Parent A (2004) Evidence of newly generated neurons in the human olfactory bulb. Dev Brain Res 151:159–168CrossRefGoogle Scholar
  9. Bell C, Bodznick D, Montgomery J, Bastian J (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50 (Suppl. 1):17–31PubMedCrossRefGoogle Scholar
  10. Braford MR (1995) Comparative aspects of forebrain organization in the ray-finned fishes: touchstones or nor? Brain Behav Evol 46:259–274PubMedCrossRefGoogle Scholar
  11. Butler AB (2000) Topography and topology of the teleost telencephalon: a paradoxon resolved. Neurosci Lett 293:95–98PubMedCrossRefGoogle Scholar
  12. Cameron DA (2000) Cellular proliferation and neurogenesis in the injured retina of adult zebrafish. Vis Neurosci 17:789–797PubMedCrossRefGoogle Scholar
  13. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417PubMedCrossRefGoogle Scholar
  14. Candal E, Anadón R, DeGrip WJ, Rodríguez-Moldes I (2005) Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout. Dev Brain Res 154:101–119CrossRefGoogle Scholar
  15. Carlsen J, De Olmos J, Heimer L (1982) Tracing of two-neuron pathways in the olfactory system by the aid of transneuronal degeneration: projections to the amygdaloid body and hippocampal formation. J Comp Neurol 208:196–208PubMedCrossRefGoogle Scholar
  16. Clint SC, Zupanc GKH (2001) Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus : guidance of migrating young cells by radial glia. Dev Brain Res 130:15–23CrossRefGoogle Scholar
  17. Clint SC, Zupanc GKH (2002) Up-regulation of vimentin expression during regeneration in the adult fish brain. NeuroReport 13:317–320PubMedCrossRefGoogle Scholar
  18. Corotto FS, Henegar JA, Maruniak JA (1993) Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett 149:111–114PubMedCrossRefGoogle Scholar
  19. Corwin JT (1981) Postembryonic production and aging of inner ear hair cells in sharks. J Comp Neurol 201:541–553PubMedCrossRefGoogle Scholar
  20. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WMC, Björk-Eriksson T, Nordborg C, Frisén J, Dragunow M, Faull RLM, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249PubMedCrossRefGoogle Scholar
  21. Ekström P, Johnsson C-M, Ohlin L-M (2001) Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol 436:92–110PubMedCrossRefGoogle Scholar
  22. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRefGoogle Scholar
  23. Fine ML (1989) Embryonic, larval and adult development of the sonic neuromuscular system in the oyster toadfish. Brain Behav Evol 34:13–24PubMedCrossRefGoogle Scholar
  24. Fontana X, Nacher J, Soriano E, Del Rio JA (2006) Cell proliferation in the adult hippocampal formation of rodents and its modulation by entorhinal and fimbria-fornix afferents. Cereb Cortex 16:301–312PubMedCrossRefGoogle Scholar
  25. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA 96:5263–5267PubMedCrossRefGoogle Scholar
  26. Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295:263–277PubMedCrossRefGoogle Scholar
  27. Graziadei PP, Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 8:1–18PubMedCrossRefGoogle Scholar
  28. Gregory WA, Edmondson JC, Hatten ME, Mason CA (1988) Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro. J Neurosci 8:1728–1738PubMedGoogle Scholar
  29. Grosche J, Härtig W, Reichenbach A (1995) Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and Bcl-2 protooncogene protein by Müller (glial) cells in retinal light damage of rats. Neurosci Lett 185:119–122PubMedCrossRefGoogle Scholar
  30. Hagedorn M, Fernald RD (1992) Retinal growth and cell addition during embryogenesis in the teleost, Haplochromis burtoni. J Comp Neurol 321:193–208PubMedCrossRefGoogle Scholar
  31. Han Z-G, Zhang Q-H, Ye M, Kan L-X, Gu B-W, He K-L, Shi S-L, Zhou J, Fu G, Mao M, Chen S-J, Yu L, Chen Z (1999) Molecular cloning of six novel Krüppel-like zinc finger genes from hematopoietic cells and identification of a novel transregulatory domain KRNB. J Biol Chem 274:35741–35748PubMedCrossRefGoogle Scholar
  32. Härtig W, Grosche J, Distler C, Grimm D, el-Hifnawi E, Reichenbach A (1995) Alterations of Müller (glial) cells in dystrophic retinae of RCS rats. J Neurocytol 24:507–517PubMedCrossRefGoogle Scholar
  33. Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25:2518–2521PubMedCrossRefGoogle Scholar
  34. Herrup K, Sunter K (1987) Numerical matching during cerebellar development: quantitative analysis of granule cell death in staggerer mouse chimeras. J Neurosci 7:829–836PubMedGoogle Scholar
  35. Herrup K, Shojaeian-Zanjani H, Panzini L, Sunter K, Mariani J (1996) The numerical matching of source and target populations in the CNS: the inferior olive to Purkinje cell projection. Dev Brain Res 96:28–35CrossRefGoogle Scholar
  36. Higgs DM, Souza MJ, Wilkins HR, Presson JC, Popper AN (2002) Age- and size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio). J Assoc Res Otolaryngol 3:174–184PubMedCrossRefGoogle Scholar
  37. Hinsch K, Zupanc GKH (2006) Isolation, cultivation, and differentiation of neural stem cells from adult fish brain. J Neurosci Methods 158:75–88PubMedCrossRefGoogle Scholar
  38. Hinsch K, Zupanc GKH (2007) Generation and long-term persistence of new neurons in the adult zebrafish brain: a quantitative analysis. Neuroscience 146:679–696PubMedCrossRefGoogle Scholar
  39. Hitchcock PF, Lindsey Myhr KJ, Easter SS, Jr., Mangione-Smith R, Jones DD (1992) Local regeneration in the retina of the goldfish. J Neurobiol 23:187–203PubMedCrossRefGoogle Scholar
  40. Insausti R, Marcos P, Arroyo-Jimenez MM, Blaizot X, Martinez-Marcos A (2002) Comparative aspects of the olfactory portion of the entorhinal cortex and its projection to the hippocampus in rodents, nonhuman primates, and the human brain. Brain Res Bull 57:557–560PubMedCrossRefGoogle Scholar
  41. Janssen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30:210–229PubMedCrossRefGoogle Scholar
  42. Johns PR, Easter SSJ (1977) Growth of the adult goldfish eye: II. Increase in retinal cell number. J Comp Neurol 176:331–342PubMedCrossRefGoogle Scholar
  43. Johns PR (1982) Formation of photoreceptors in larval and adult goldfish. J Neurosci 2:178–198PubMedCrossRefGoogle Scholar
  44. Kaplan MS, Bell DH (1984) Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci 4:1429–1441PubMedCrossRefGoogle Scholar
  45. Kaplan MS, McNelly NA, Hinds JW (1985) Population dynamics of adult-formed granule neurons of the rat olfactory bulb. J Comp Neurol 239:117–125PubMedCrossRefGoogle Scholar
  46. Kaushal D, Contos JJA, Treuner K, Yang AH, Kingsbury MA, Rehen SK, McConnell MJ, Okabe M, Barlow C, Chun J (2003) Alteration of gene expression by chromosome loss in the postnatal mouse brain. J Neurosci 23:5599–5606PubMedCrossRefGoogle Scholar
  47. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399PubMedCrossRefGoogle Scholar
  48. Kerr JFR, Gobé GC, Winterford CM, Harmon BV (1995) Anatomical methods in cell death. In: Schwartz LM, Osborne BA (eds) Cell Death, pp 1–27. Academic Press, San DiegoPubMedCrossRefGoogle Scholar
  49. Kirsche W (1967) Über postembryonale Matrixzonen im Gehirn verschiedener Vertebraten und deren Beziehung zur Hirnbauplanlehre. Z mikrosk-anat Forsch 77:313–406PubMedCrossRefGoogle Scholar
  50. Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773PubMedCrossRefGoogle Scholar
  51. Koumans JTM, Akster HA (1995) Myogenic cells in development and growth of fish. Comp Biochem Physiol 110A:3–20PubMedCrossRefGoogle Scholar
  52. Kranz D, Richter W (1970a) Autoradiographische Untersuchungen über die Lokalisation der Matrixzonen des Diencephalons von juvenilen und adulten Lebistes reticulatus (Teleostei). Z Mikrosk-Anat Forsch 82:42–66Google Scholar
  53. Kranz D, Richter W (1970b) Autoradiographische Untersuchungen zur DNS-Synthese im Cerebellum und in der Medulla oblongata von Teleostiern verschiedenen Lebensalters. Z mikrosk-anat Forsch 82:264–292Google Scholar
  54. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318PubMedCrossRefGoogle Scholar
  55. Lee TH, Lwu S, Kim J, Pelletier J (2002) Inhibition of Wilms tumor 1 transactivation by bone marrow zinc finger 2, a novel transcriptional repressor. J Biol Chem 277:44826–44837PubMedCrossRefGoogle Scholar
  56. Lewis GP, Erickson PA, Guerin CJ, Anderson DH, Fisher SK (1989) Changes in the expression of specific Müller cell proteins during long-term retinal detachment. Exp Eye Res 49:93–111PubMedCrossRefGoogle Scholar
  57. Lewis GP, Guerin CJ, Anderson DH, Matsumoto B, Fisher SK (1994) Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. Am J Ophthalmol 118:368–376PubMedGoogle Scholar
  58. Liou AKF, Clark RS, Henshall DC, Yin X-M, Chen J (2003) To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 69:103–142PubMedCrossRefGoogle Scholar
  59. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148PubMedCrossRefGoogle Scholar
  60. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981PubMedCrossRefGoogle Scholar
  61. Lund LM, McQuarrie IG (1996) Axonal regrowth upregulates b-actin and Jun D mRNA expression. J Neurobiol 31:476–486PubMedCrossRefGoogle Scholar
  62. Lund LM, Machado VM, McQuarrie IG (2002) Increased b-actin and tubulin polymerization in regrowing axons: relationship to the conditioning lesion effect. Exp Neurol 178:306–312PubMedCrossRefGoogle Scholar
  63. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons from the forebrain subventricular zone. Neuron 11:173–189PubMedCrossRefGoogle Scholar
  64. Magrassi L, Graziadei PP (1995) Cell death in the olfactory epithelium. Anat Embryol 192:77–87PubMedCrossRefGoogle Scholar
  65. Mansour-Robaey S, Pinganaud G (1990) Quantitative and morphological study of cell proliferation during morphogenesis in the trout visual system. J Hirnforsch 31:495–504PubMedGoogle Scholar
  66. Marcus RC, Delaney CL, Easter SS (1999) Neurogenesis in the visual system of embryonic and adult zebrafish (Danio rerio ). Vis Neurosci 16:417–424PubMedCrossRefGoogle Scholar
  67. Meyer RL (1978) Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish. Exp Neurol 59:99–111PubMedCrossRefGoogle Scholar
  68. Moore S, Thanos S (1996) The concept of microglia in relation to central nervous system disease and regeneration. Prog Neurobiol 48:441–460PubMedCrossRefGoogle Scholar
  69. Nagamoto-Combs K, McNeal DW, Morecraft RJ, Combs CK (2007) Prolonged microgliosis in the rhesus monkey central nervous system after traumatic brain injury. J Neurotrauma 24:1719–1742PubMedCrossRefGoogle Scholar
  70. Nguyen V, Deschet K, Henrich T, Godet E, Joly JS, Wittbrodt J, Chourrout D, Bourrat F (1999) Morphogenesis of the optic tectum in the medaka (Oryzias latipes): a morphological and molecular study, with special emphasis on cell proliferation. J Comp Neurol 413:385–404PubMedCrossRefGoogle Scholar
  71. Nieuwenhuys R, Meek J (1990) The telencephalon of actinopterygian fishes. In: Jones EG, Peters A (eds) Comparative structure and evolution of the cerebral cortex, pp 31–73. Plenum, New YorkGoogle Scholar
  72. Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318PubMedCrossRefGoogle Scholar
  73. Northcutt RG, Braford MR (1980) New observations on the organization and evolution of the telencephalon of actinopterygian fishes. In: Ebbesson SOE (eds) Comparative Neurology of the Telencephalon, pp 41–98. Plenum, New YorkCrossRefGoogle Scholar
  74. Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87:5144–5147PubMedCrossRefGoogle Scholar
  75. Osada T, Kusakabe H, Akutsu H, Yagi T, Yanagimachi R (2002) Adult murine neurons: their chromatin and chromosome changes and failure to support embryonic development as revealed by nuclear transfer. Cytogenet Genome Res 97:7–12PubMedCrossRefGoogle Scholar
  76. Ott R, Zupanc GKH, Horschke I (1997) Long-term survival of postembryonically born cells in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci Lett 221:185–188PubMedCrossRefGoogle Scholar
  77. Otteson DC, Hitchcock PF (2003) Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Res 43:927–936PubMedCrossRefGoogle Scholar
  78. Paulin MG (1993) The role of the cerebellum in motor control and perception. Brain Behav Evol 41:39–50PubMedCrossRefGoogle Scholar
  79. Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172:1–16PubMedCrossRefGoogle Scholar
  80. Portavella M, Torres B, Salas C (2004) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342PubMedCrossRefGoogle Scholar
  81. Pouwels E (1978a) On the development of the cerebellum of the trout, Salmo gairdneri: I. Patterns of cell migration. Anat Embryol 152:291–308PubMedCrossRefGoogle Scholar
  82. Pouwels E (1978b) On the development of the cerebellum of the trout, Salmo gairdneri: III. Development of neuronal elements. Anat Embryol 153:37–54PubMedCrossRefGoogle Scholar
  83. Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400CrossRefGoogle Scholar
  84. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700PubMedCrossRefGoogle Scholar
  85. Rahmann H (1968) Autoradiographische Untersuchungen zum DNS-Stoffwechsel (Mitose-Häufigkeit) im ZNS von Brachydanio rerio HAM. BUCH. (Cyprinidae, Pisces). J Hirnforsch 10:279–284PubMedGoogle Scholar
  86. Rajendran RS, Zupanc MM, Lösche A, Westra J, Chun J, Zupanc GKH (2007) Numerical chromosome variation and mitotic segregation defect in the adult brain of teleost fish. Dev Neurobiol 67:1334–1347PubMedCrossRefGoogle Scholar
  87. Rajendran RS, Wellbrock UM, Zupanc GKH (2011) Apoptotic cell death, long-term persistence, and neuronal differentiation of aneuploid cells generated in the adult brain of teleost fish. Dev Neurobiol 68:1257–1268CrossRefGoogle Scholar
  88. Rakic P (1971) Neuron–glia relationship during granule cell migration in developing cerebellar cortex: a Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312PubMedCrossRefGoogle Scholar
  89. Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83PubMedCrossRefGoogle Scholar
  90. Raymond PA, Easter SS, Jr. (1983) Postembryonic growth of the optic tectum in goldfish. I. Location of germinal cells and numbers of neurons produced. J Neurosci 3:1077–1091PubMedGoogle Scholar
  91. Raymond PA, Easter SS, Jr., Burnham JA, Powers MK (1983) Postembryonic growth of the optic tectum in goldfish. II. Modulation of cell proliferation by retinal fiber input. J Neurosci 3:1092–1099PubMedGoogle Scholar
  92. Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci USA 98:13361–13366PubMedCrossRefGoogle Scholar
  93. Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BSV, Kingsbury MA, Cabral KMS, McConnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25:2176–2180PubMedCrossRefGoogle Scholar
  94. Reier PJ, Stensaas LJ, Guth L (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal Cord Reconstruction, pp 163–195. Raven Press, New YorkGoogle Scholar
  95. Richter W, Kranz D (1970a) Autoradiographische Untersuchungen über die Abhängigkeit des 3H-Thymidin-Index vom Lebensalter in den Matrixzonen des Telencephalons von Lebistes reticulatus (Teleostei). Z mikrosk-anat Forsch 81:530–554Google Scholar
  96. Richter W, Kranz D (1970b) Die Abhängigkeit der DNS-Synthese in den Matrixzonen des Mesencephalons vom Lebensalter der Versuchstiere (Lebistes reticulatus – Teleostei): Autoradiographische Untersuchungen. Z mikrosk-anat Forsch 82:76–92Google Scholar
  97. Rodríguez F, López JC, Vargas JP, Gómez Y, Broglio C, Salas C (2002) Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci 22:2894–2903PubMedGoogle Scholar
  98. Rowe RWD, Goldspink G (1969) Muscle fibre growth in five different muscles in both sexes of mice. J Anat 104:519–530PubMedGoogle Scholar
  99. Rowlerson A, Veggetti A (2001) Cellular mechanisms of post-embryonic muscle growth in aquaculture species. In: Johnston IA (ed) Muscle Development and Growth, pp 103–140. Academic Press, San DiegoCrossRefGoogle Scholar
  100. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, García-Verdugo JM, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744CrossRefGoogle Scholar
  101. Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160PubMedGoogle Scholar
  102. Sîrbulescu RF, Zupanc GKH (in press) Spinal cord repair in regeneration-competent vertebrates: adult teleost fish as a model system. Brain Res RevPubMedGoogle Scholar
  103. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88:10540–10543PubMedCrossRefGoogle Scholar
  104. Soutschek J, Zupanc GKH (1995) Apoptosis as a regulator of cell proliferation in the central posterior/prepacemaker nucleus of adult gymnotiform fish, Apteronotus leptorhynchus. Neurosci Lett 202:133–136PubMedCrossRefGoogle Scholar
  105. Soutschek J, Zupanc GKH (1996) Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus. Dev Brain Res 97:279–286CrossRefGoogle Scholar
  106. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581PubMedCrossRefGoogle Scholar
  107. Takeda A, Nakano M, Goris RC, Funakoshi K (2008) Adult neurogenesis with 5-HT expression in lesioned goldfish spinal cord. Neuroscience 151:1132–1141PubMedCrossRefGoogle Scholar
  108. Tetzlaff W, Alexander SW, Miller FD, Bisby MA (1991) Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 11:2528–2544PubMedGoogle Scholar
  109. Vajda FJ (2002) Neuroprotection and neurodegenerative disease. J Clin Neurosci 9:4–8PubMedCrossRefGoogle Scholar
  110. van Groen T, Kadish I, Wyss JM (2002) Species differences in the projections from the entorhinal cortex to the hippocampus. Brain Res Bull 57:553–556PubMedCrossRefGoogle Scholar
  111. van Groen T, Miettinen P, Kadish I (2003) The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus 13:133–149PubMedCrossRefGoogle Scholar
  112. Vargas JP, Rodríguez F, López JC, Arias JL, Salas C (2000) Spatial learning-induced increase in the argyophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Res 865:77–84PubMedCrossRefGoogle Scholar
  113. Waxman SG, Anderson MJ (1986) Regeneration of central nervous structures: Apteronotus spinal cord as a model system. In: Bullock TH, Heiligenberg W (eds) Electroreception, pp 183–208. John Wiley & Sons, New YorkGoogle Scholar
  114. Weatherley AH, Gill HS (1985) Dynamics of increase in muscle fibres in fishes in relation to size and growth. Experientia 41:353–354CrossRefGoogle Scholar
  115. Wetts R, Herrup K (1983) Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild-type mice. Brain Res 312:41–47PubMedGoogle Scholar
  116. Williams RW (2000) Mapping genes that modulate brain development: a quantitative genetic approach. In: Goffinet AF, Rakic P (eds) Mouse Brain Development, pp 21–49. Springer-Verlag, New YorkCrossRefGoogle Scholar
  117. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16:1681–1689PubMedCrossRefGoogle Scholar
  118. Wullimann MF, Puelles L (1999) Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anat Embryol (Berl) 199:329–348CrossRefGoogle Scholar
  119. Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the Zebrafish Brain: A Topological Atlas. Birkhäuser Verlag, Basel/Boston/BerlinCrossRefGoogle Scholar
  120. Yurov YB, Iourov IY, Monakhov VV, Soloviev IV, Vostrikov VM, Vorsanova SG (2005) The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem 53:385–390PubMedCrossRefGoogle Scholar
  121. Zakon HH (1984) Postembryonic changes in the peripheral electrosensory system of a weakly electric fish: addition of receptor organs with age. J Comp Neurol 228:557–570PubMedCrossRefGoogle Scholar
  122. Zhang Z, Krebs CJ, Guth L (1997) Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response. Exp Neurol 143:141–152PubMedCrossRefGoogle Scholar
  123. Zikopoulos B, Kentouri M, Dermon CR (2000) Proliferation zones in the adult brain of a sequential hermaphrodite teleost species (Sparus aurata). Brain Behav Evol 56:310–322PubMedCrossRefGoogle Scholar
  124. Zimmerman AM, Lowery MS (1999) Hyperplastic development and hypertrophic growth of muscle fibers in the white seabass (Atractoscion nobilis). J Exp Zool 284:299–308PubMedCrossRefGoogle Scholar
  125. Zupanc GKH (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 202:1435–1446PubMedGoogle Scholar
  126. Zupanc GKH (2001) Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav Evol 58:250–275PubMedCrossRefGoogle Scholar
  127. Zupanc GKH (2006a) Neurogenesis and neuronal regeneration in the adult fish brain. J Comp Physiol A 192:649–670CrossRefGoogle Scholar
  128. Zupanc GKH (2006b) Adult neurogenesis and neuronal regeneration in the teleost fish brain: implications for the evolution of a primitive vertebrate trait. In: Bullock TH, Rubenstein LR (eds) The Evolution of Nervous Systems in Non-Mammalian Vertebrates, pp 485–520. Academic Press, OxfordGoogle Scholar
  129. Zupanc GKH (2007) Proteomics of traumatic brain injury and regeneration. Proteomics Clin Appl 1:1362–1372PubMedCrossRefGoogle Scholar
  130. Zupanc GKH (2008a) Adult neurogenesis in teleost fish. In: Gage FH, Kempermann G, Song H (eds) Adult Neurogenesis, pp 571–592. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  131. Zupanc GKH (2008b) Adult neurogenesis and neuronal regeneration in the brain of teleost fish. J Physiol (Paris) 102:357–373CrossRefGoogle Scholar
  132. Zupanc GKH (2009) Towards brain repair: insights from teleost fish. Semin Cell Dev Biol 20:683–690PubMedCrossRefGoogle Scholar
  133. Zupanc GKH, Clint SC (2003) Potential role of radial glia in adult neurogenesis of teleost fish. Glia 43:77–86PubMedCrossRefGoogle Scholar
  134. Zupanc GKH, Horschke I (1995) Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J Comp Neurol 353:213–233PubMedCrossRefGoogle Scholar
  135. Zupanc GKH, Ott R (1999) Cell proliferation after lesions in the cerebellum of adult teleost fish: time course, origin, and type of new cells produced. Exp Neurol 160:78–87PubMedCrossRefGoogle Scholar
  136. Zupanc GKH, Zupanc MM (1992) Birth and migration of neurons in the central posterior/prepacemaker nucleus during adulthood in weakly electric knifefish (Eigenmannia sp.). Proc Natl Acad Sci USA 89:9539–9543PubMedCrossRefGoogle Scholar
  137. Zupanc GKH, Zupanc MM (2006a) New neurons for the injured brain: mechanisms of neuronal regeneration in adult teleost fish. Regenerative Med 1:207–216PubMedCrossRefGoogle Scholar
  138. Zupanc MM, Zupanc GKH (2006b) Upregulation of calbindin-D28k expression during regeneration in the adult fish cerebellum. Brain Res 1095:26–34PubMedCrossRefGoogle Scholar
  139. Zupanc GKH, Zupanc MM (2011) Proteomic analysis of CNS injury and recovery. In: Clelland JD (ed) Genomics, Proteomics, and the Nervous System, pp 511–536. Series: Advances in Neurobiology, Vol 2. Springer-Verlag, New YorkPubMedCrossRefGoogle Scholar
  140. Zupanc MM, Horschke I, Ott R, Rascher GB (1996) Postembryonic development of the cerebellum in gymnotiform fish. J Comp Neurol 370:443–464PubMedCrossRefGoogle Scholar
  141. Zupanc GKH, Kompass KS, Horschke I, Ott R, Schwarz H (1998) Apoptosis after injuries in the cerebellum of adult teleost fish. Exp Neurol 152:221–230PubMedCrossRefGoogle Scholar
  142. Zupanc GKH, Clint SC, Takimoto N, Hughes ATL, Wellbrock UM, Meissner D (2003) Spatio-temporal distribution of microglia/macrophages during regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: a quantitative analysis. Brain Behav Evol 62:31–42PubMedCrossRefGoogle Scholar
  143. Zupanc GKH, Hinsch K, Gage FH (2005) Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol 488:290–319PubMedCrossRefGoogle Scholar
  144. Zupanc MM, Wellbrock UM, Zupanc GKH (2006) Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish. Proteomics 6:677–696PubMedCrossRefGoogle Scholar
  145. Zupanc GKH, Wellbrock UM, Sîrbulescu RF, Rajendran RS (2009) Generation, long-term persistence, and neuronal differentiation of cells with nuclear aberrations in the adult zebrafish brain. Neuroscience 159:1338–1348PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations