Song Learning in Birds Offers a Model for Neuronal Replacement in Adult Brain

  • Fernando NottebohmEmail author


The discovery of neurogenesis in adult canaries came as a surprise because it was found in a context where it had not been contemplated, the study of vocal learning. To everybody’s disbelief, the new, spontaneously produced neurons replaced numerically others that had died, a process of spontaneous brain self-repair or rejuvenation. I will describe how these discoveries came about and how they have helped us understand the natural history of neurogenesis and neuronal replacement in adult brain. Adult neurogenesis may also shed light on a basic issue of brain function: what limits learning?


Zebra Finch Adult Neurogenesis Ventricular Zone Radial Glia Vocal Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adar, E., Nottebohm, F., Barnea, A. 2008. The relationship between nature of social change, age and position of new neurons and their survival in adult zebra finch brain. J. Neurosci. 28:5394–5400.PubMedGoogle Scholar
  2. Agate, R.J., Grisham, W., Wade, J., Mann, S., Wingfield, J., Schanen, C., Palotie, A., Arnold, A.P. 2003. A neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. Proc. Natl. Acad. Sci. USA 100:4873–4878.PubMedGoogle Scholar
  3. Agate, R.J., Choe, M., Arnold, A.P. 2004. Sex differences in structure and expression of the sex chromosome genes CHD1Z and CHD1W in zebra finches. Mol. Biol. Evol. 21:384–396.PubMedGoogle Scholar
  4. Airey, D.C., Kroodsma, D.E., DeVoogd, T.J. 2000. Differences in the complexity of song tutoring cause differences in the amount learned and in dendritic spine density in a songbird telencephalic song control nucleus. Neurobiol. Learn. Mem. 73:274–281.PubMedGoogle Scholar
  5. Altman, J. 1962. Are new neurons formed in the brains of adult mammals? Science 135:1127–1128.PubMedGoogle Scholar
  6. Altman, J. 1963. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec. 145:573–591.PubMedGoogle Scholar
  7. Altman, J. 1967. Postnatal growth and differentiation of the mammalian brain, with implications for a morphological theory of memory. In “The Neurosciences, a Study Program”, G.C. Quarton, T. Melnechuck, F.O. Schmidt, eds., pp. 723–743. The Rockefeller University Press, New York.Google Scholar
  8. Altman, J. 1969. DNA metabolism and cell proliferation. In “Structural Neurochemistry”, A. Lajtha, ed. Plenum Press, New York/London, Handbook of Neurochemistry, vol II, pp. 137–182.Google Scholar
  9. Altman, J. 1970. Postnatal neurogenesis and the problem of neural plasticity. In “Developmental Neurobiology”, pp.197–237.Google Scholar
  10. Altman, J., Bulut, F.G. 1976. Organic maturation and the development of learning capacity. In “Neural Mechanisms of Learning and Memory”, M.R. Rosenzweig, E.L. Bennett, eds., pp. 236–240. MIT Press.Google Scholar
  11. Altman, J., Das, G.D. 1965. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335.Google Scholar
  12. Alvarez-Borda, B., Nottebohm, F. 2002 Gonads and singing play separate, additive roles in new neuron recruitment in adult canary brain. J. Neurosci. 22:8684–8690.PubMedGoogle Scholar
  13. Alvarez-Borda, B., Haripal, B., Nottebohm, F. 2004. Timing of brain-derived neurotrophic factor exposure affects life expectancy of new neurons. Proc. Natl. Acad. Sci. USA 101:3957–3961.PubMedGoogle Scholar
  14. Alvarez-Buylla, A., Lim, D.A. 2004. For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686.PubMedGoogle Scholar
  15. Alvarez-Buylla, A., Nottebohm, F. 1988. Migration of young neurons in adult avian brain. Nature 335:353–354.PubMedGoogle Scholar
  16. Alvarez-Buylla, A., Buskirk, D.R., Nottebohm, F. 1987. Monoclonal antibody reveals radial glia in adult avian brain. J. Comp. Neurol. 264:159–170.PubMedGoogle Scholar
  17. Alvarez-Buylla, A., Theelen, M., Nottebohm, F. 1988a. Birth of projection neurons in the higher vocal center of the canary forebrain before, during and after song learning. Proc. Natl. Acad. Sci. USA. 85:8722–8726.PubMedGoogle Scholar
  18. Alvarez-Buylla, A., Theelen, M., Nottebohm, F. 1988b. Mapping of radial glia and of a new cell type in adult canary brain. J. Neurosci. 8:2707–2712.PubMedGoogle Scholar
  19. Alvarez-Buylla, A., Kirn, J.R., Nottebohm, F. 1990a. Birth of projection neurons in adult avian brain may be related to perceptual or motor learning. Science 249:1444–1446.PubMedGoogle Scholar
  20. Alvarez-Buylla, A., Theelen, M., Nottebohm, F. 1990b. Proliferation “hot spots” in adult avian ventricular zone reveal radial cell division. Neuron 5:101–109.PubMedGoogle Scholar
  21. Alvarez-Buylla, A., Ling, C-Y., Nottebohm, F. 1992. High vocal center growth and its relation to neurogenesis, neuronal replacement and song acquisition in juvenile canaries. J. Neurobiol. 23:396–406.PubMedGoogle Scholar
  22. Alvarez-Buylla, A., Garcia-Verdugo, J.M., Mateo, A.S., Merchant-Larios, H. 1998. Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J. Neurosci. 18:1020–1037.PubMedGoogle Scholar
  23. Alvarez-Buylla, A., Seri, B., Doetsch, F. 2002. Identification of neural stem cells in the adult vertebrate brain. Brain Res. Bull. 57:751–758.PubMedGoogle Scholar
  24. Andalman, A.S., Fee, M.S. 2009. A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors. Proc. Natl. Acad. Sci. USA 106:12518–12523.PubMedGoogle Scholar
  25. Anderson, M.J., Waxman, S.G. 1985. Neurogenesis in adult vertebrate spinal cord in situ and in vitro: a new model system. In “Hope for a New Neurology”, F. Nottebohm, ed., Ann. N.Y. Acad. Sci., vol 457, pp. 213–233.Google Scholar
  26. Angevine, J.B. 1965. Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Exp. Neurol. Suppl. 2:1–70.Google Scholar
  27. Arnold, A.P., Nottebohm, F., Pfaff, D.W. 1976. Hormone concentrating cells in vocal control and other areas of the brain of the zebra finch. J. Comp. Neurol. 165:487–512.PubMedGoogle Scholar
  28. Aronov, D., Andalman, A.S., Fee, M.S. 2008. A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320:630–634.PubMedGoogle Scholar
  29. Barnea, A., Nottebohm, F. 1994. Seasonal recruitment of new neurons in the hippocampus of adult, free-ranging black-capped chickadees. Proc. Natl. Acad. Sci. USA 91:11217–11221.PubMedGoogle Scholar
  30. Barnea, A., Nottebohm, F. 1996. Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proc. Natl. Acad. Sci. USA 93:714–718.PubMedGoogle Scholar
  31. Barnea, A., Mishal, A., Nottebohm, F. 2006. Social and spatial changes induce multiple survival regimes for new neurons in two regions of the adult brain: an anatomical representation of time? Behav. Brain Res. 167:63–74.PubMedGoogle Scholar
  32. Bayer, S.A. 1985. Neuron production in the hippocampus and olfactory bulb of the adult rat brain: addition or replacement? In “Hope for a New Neurology”, F. Nottebohm, ed., Ann. N.Y. Acad. Sci., vol 457, pp. 163–172.Google Scholar
  33. Bayer, S.A., Yackel, J.W., Puri, P.S. 1982. Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–892.PubMedGoogle Scholar
  34. Birse, S.C., Leonard, R.B., Coggeshall, R.E. 1980. Neuronal increase in various areas of the nervous system of the guppy, Lebistes. J. Comp. Neurol. 194:291–301.PubMedGoogle Scholar
  35. Boehner, J. 1990. Early acquisition of song in the zebra finch, Taeniopygia guttata. Anim. Behav. 39:369–374.Google Scholar
  36. Bottjer, S.W., Miesner, E.A., Arnold, A.P. 1984. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224:901–903.PubMedGoogle Scholar
  37. Bottjer, S.W., Halsema, K.A., Brown, S.A., Miesner, E.A. 1989. Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J. Comp. Neurol. 279:312–326.PubMedGoogle Scholar
  38. Brainard, M.S., Doupe, A.J. 2000. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404:762–766.PubMedGoogle Scholar
  39. Brainard, M.S., Doupe, A.J. 2001. Postlearning consolidation of birdsong: stabilizing effects of age and anterior forebrain lesions. J. Neurosci. 21:2501–2517.PubMedGoogle Scholar
  40. Breunig, J.J et al. 2007. Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Stem Cell Res. 1:612–627.Google Scholar
  41. Bryans, W.A. 1959. Mitotic activity in the brain of the adult rat. Anat. Rec. 133:65–71.Google Scholar
  42. Bullock, T.H. 1961. The origins of patterned nervous discharge. Behaviour 17:48–59.Google Scholar
  43. Burd, G.D., Nottebohm, F. 1985. Ultrastructural characterization of synaptic terminals formed on newly generated neurons in a song control nucleus of the adult canary forebrain. J. Comp. Neurol. 240:143–152.PubMedGoogle Scholar
  44. Burek, M.J., Nordeen, K.W., Nordeen, E.J. 1991. Neuron loss and addition in developing zebra finch song nuclei are independent of auditory experience during song learning. J. Neurobiol. 22:215–223.PubMedGoogle Scholar
  45. Cajal, S.R. 1894. The Croonian Lecture. La fine structure des centres nerveux. Proc. R. soc. Lond. B 55:444–467.Google Scholar
  46. Cajal, S.R. 1911. Histologie du Systeme Nerveux, vol. 2, pp. 80–119. Maloire, Paris.Google Scholar
  47. Canady, R.A., Kroodsma, D.E., Nottebohm, F. 1984. Population differences in complexity of a learned skill are correlated with brain space involved. Proc. Natl. Acad. Sci. USA 81:6232–6234.PubMedGoogle Scholar
  48. Canady R.A., Burd, G.B., DeVoogd, T.J., Nottebohm, F. 1988. Effect of testosterone on input received by an identified neuron type of the canary song system: a Golgi/EM/Degeneration study. J. Neurosci. 8:3770–3784.PubMedGoogle Scholar
  49. Cardin, J.A., Schmidt, M.F. 2004. Auditory responses in multiple sensorimotor song system nuclei are co-modulated by behavioral state. J. Neurophysiol. 91:2148–2163.PubMedGoogle Scholar
  50. Dave, A.S., Yu, A.C., Margoliash, D. 1998. Behavioral state modulation of auditory activity in a vocal motor system. Science 282:2250–2254.PubMedGoogle Scholar
  51. Dayer, A.G., Cleaver K.M., Abouantoun, T., Cameron, H.A. 2005. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol. 168:415–427.PubMedGoogle Scholar
  52. DeVoogd, T.J., Nottebohm, F. 1981. Gonadal hormones induce dendritic growth in the adult brain. Science 214:202–204.PubMedGoogle Scholar
  53. DeVoogd, T.J., Nixdorf, B., Nottebohm, F. 1985. Synaptogenesis and changes in synaptic ­morphology related to acquisition of a new behavior. Brain Res. 329:304–308.PubMedGoogle Scholar
  54. DeVoogd, T.J., Pyskaty, D.J., Nottebohm, F. 1991. Lateral asymmetries and testosterone-induced changes in the gross morphology of the hypoglossal nucleus in adult canaries. J. Comp. Neurol. 307:65–76.PubMedGoogle Scholar
  55. DeVoogd, T.J., Krebs, J.R., Healy, S.D., Purvis, A. 1993. Relations between song repertoire size and the volume of brain nuclei related to song: comparative evolutionary analyses amongst oscine birds. Proc. R. Soc. Lond. B 254:75–82.Google Scholar
  56. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M., Alvarez-Buylla, A. 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.PubMedGoogle Scholar
  57. Eales, L.A. 1985. Song learning in zebra finches: some effects of song model availability on what is learnt and when. Anim. Behav. 33:1293–1300.Google Scholar
  58. Easter, S.S., Jr. 1983. Postnatal neurogenesis and changing connections. Trends Neurosci. 6:53–56.Google Scholar
  59. Goldman, S.A., Nottebohm, F. 1983. Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. USA 80:2390–2394.PubMedGoogle Scholar
  60. Gould, E., Reeves, A.J., Graziano M.S.A., Gross, C.G. 1999. Neurogenesis in the neocortex of adult primates. Science 286:548–552.PubMedGoogle Scholar
  61. Graziadei, P.P.C., DeHan, R.S. 1973. Neuronal regeneration in frog olfactory system. J. Cell Biol. 59:525–530.PubMedGoogle Scholar
  62. Graziadei, P.P.C., Monti Graziadei, G.A. 1978. Continuous cell renewal in the olfactory system. In “Handbook of Sensory Physiology”, M. Jacobson, ed., vol IX, pp. 55–83. Springer Verlag, Berlin.Google Scholar
  63. Graziadei, P.P.C., Monti Graziadei, G.A. 1985. Neurogenesis and plasticity of the olfactory sensory neurons. In “Hope for a New Neurology”, F. Nottebohm, ed., Ann. N.Y. Acad. Sci., vol 457, pp. 143–161.Google Scholar
  64. Gurney, M.E. 1981. Hormonal control of cell form and number in the zebra finch song system. J. Neurosci. 1:658–673.PubMedGoogle Scholar
  65. Gurney, M.E., Konishi, M. 1980. Hormone induced sexual differentiation of brain and behavior in zebra finches. Science 208:1380–1383.PubMedGoogle Scholar
  66. Hahnloser, R.H., Kozhevnikov, A.A., Fee, M.S. 2002. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70.PubMedGoogle Scholar
  67. Hebb, D.O. 1949. The organization of behavior. John Wiley & Sons, New York.Google Scholar
  68. Huber, F. 1960. Untersuchungen ueber die Funktion des Zentralnervensystems und insbesondere des Gehirns bei der Fortbewegung und der Lauterzeugung der Grillen. Z. vergl. Physiol. 44:60–132.Google Scholar
  69. Immelmann, K. 1969. Song development in the zebra finch and other estrildid finches. In “Bird Vocalizations”, R.A. Hinde, ed., pp. 61–74. Cambridge Univ. Press, London & New York.Google Scholar
  70. Janata, P., Margoliash, D. 1999. Gradual emergence of song selectivity in sensorimotor structures of the male zebra finch song system. J. Neurosci. 19:5108–5118.PubMedGoogle Scholar
  71. Johns, P.R. 1982. Formation of photoreceptors in larval and adult goldfish. J. Neurosci. 2:178–198.PubMedGoogle Scholar
  72. Kandel, E.R. 2006. In search of memory. W.W. Norton & Co., New York and London.Google Scholar
  73. Kao, M.H., Doupe, A.J., Brainard, M.S. 2005. Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433:638–643.PubMedGoogle Scholar
  74. Kaplan, M.S. 1985. Formation and turnover of neurons in young and senescent animals: an electron microscopic and morphometric analysis. In “Hope for a New Neurology”, F. Nottebohm, ed., Ann. N.Y. Acad. Sci., vol 457, pp. 173–192.Google Scholar
  75. Kaplan, M.S., Hinds, J.W. 1977. Neurogenesis in the adult rat: electron microscopic analysis of light autoradiographs. Science 197:1092–1094.PubMedGoogle Scholar
  76. Karten, H.J., Hodos, W. 1967. A stereotaxic atlas of the brain of the pigeon (Columba livia). The Johns Hopkins Press, Baltimore.Google Scholar
  77. Katz, L.C., Gurney, M.E. 1981. Auditory responses in the zebra finch’s motor system for song. Brain Res. 221:192–197.PubMedGoogle Scholar
  78. Kirn, J.R., Nottebohm, F. 1993. Direct evidence for loss and replacement of projection neurons in adult canary brain. J. Neurosci. 13:1654–1663.PubMedGoogle Scholar
  79. Kirn, J.R., Alvarez-Buylla, A., Nottebohm, F. 1991. Production and survival of projection neurons in the forebrain vocal center of adult male canaries. J. Neurosci. 11:1756–1762.PubMedGoogle Scholar
  80. Kirn, J., O’Loughlin, B., Kasparian, S., Nottebohm, F. 1994. Cell death and neuronal recruitment in the high vocal center of adult male canaries are temporally related to changes in song. Proc. Natl. Acad. Sci. USA 91:7844–7848.PubMedGoogle Scholar
  81. Kirn, J.R., Fishman, K., Sasportas, A., Alvarez-Buylla, F., Nottebohm, F. 1999. Fate of new neurons in adult canary high vocal center during the first 30 days after their formation. J. Comp. Neurol. 411:487–494.PubMedGoogle Scholar
  82. Kittelberger, J.M., Mooney, R. 2004. Acute injections of brain-derived neurotrophic factor in a vocal premotor nucleus reversibly disrupt adult birdsong stability and trigger syllable deletion. J. Neurobiol. 62:406–424.Google Scholar
  83. Koketsu, D., Mikami, A., Miyamoto, Y., Hisatsune, T. 2003. Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J. Neurosci. 23:937–942.PubMedGoogle Scholar
  84. Konishi, M. 1963. The role of auditory feedback in the vocal behavior of the domestic fowl. Z. Tierpsychol. 20:349–367.Google Scholar
  85. Konishi, M. 1965. The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol. 22:770–783.PubMedGoogle Scholar
  86. Konorski, J. 1948. Conditioned reflexes and neuron organization. Cambridge Univ. Press, London.Google Scholar
  87. Kornack, D.R., Rakic, P. 2001. Cell proliferation without neurogenesis in adult primate neocortex. Science 294:2127–2130.PubMedGoogle Scholar
  88. Korr, H. 1980. Proliferation of different cell types in the brain. Adv. Anat. Embryol. Cell Biol. 61:1–69.PubMedGoogle Scholar
  89. Kriegstein, A., Alvarez-Buylla, A. 2009. The glial nature of embryonic and adult neural stem cells. Ann. Rev. Neurosci. 32:149–184.PubMedGoogle Scholar
  90. Lahousse, E. 1888. Recherches sur l’ontogenese du cervelet. Arch. de Biol. 8:43–110.Google Scholar
  91. Lashley, K.S. 1950. In search of the engram. In “Physiological Mechanisms in Animal Behavior”. Symposia Soc. Exp. Biol., vol IV, Cambridge Univ. Press, pp. 454–482.Google Scholar
  92. Leonard, R.B., Goggeshall, R.E., Willis, W.D. 1978. A documentation of an age related increase in neuronal and axonal numbers in the stingray. J. Comp. Neurol. 179:13–22.PubMedGoogle Scholar
  93. Li, X-C., Jarvis, E.D., Alvarez-Borda, B., Lim, D.A., Nottebohm, F. 2000. A relationship between behavior, neurotrophin expression and new neuron survival. Proc. Natl. Acad. Sci. USA 97:8584–8589.PubMedGoogle Scholar
  94. Lipkind, D., Nottebohm, F., Rado, R., Barnea, A. 2002. Social change affects the survival of new neurons in the forebrain of adult songbirds. Behav. Brain Res. 133:31–43.PubMedGoogle Scholar
  95. Long, M.A., Fee, M.S. 2008. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456:189–194.PubMedGoogle Scholar
  96. Magavi, S.S., Leavitt, B.R., Macklis, J.D. 2000. Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955.PubMedGoogle Scholar
  97. Margoliash, D. 1986. Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow. J. Neurosci. 6:1643–1661.PubMedGoogle Scholar
  98. Marler, P. 1970a. A comparative approach to vocal learning: song learning in white-crowned sparrows. J. Comp. Physiol. Psychol. 71 (monogr.):1–25.Google Scholar
  99. Marler, P. 1970b. Birdsong and speech development: could there be parallels? Am. Sci. 58:669–673.PubMedGoogle Scholar
  100. Marler, P., Tamura, M. 1964. Culturally transmitted patterns of vocal behavior in sparrows. Science 146:1483–1486.PubMedGoogle Scholar
  101. Marler, P., Waser, M.S. 1977. The role of auditory feedback in canary song development. J. Comp. Physiol. Psychol. 91:8–16.PubMedGoogle Scholar
  102. Merkle, F.T., Tramontin, A.D., Garcia-Verdugo, J.M., Alvarez-Buylla, A. 2004. Proc. Natl. Acad. Sci. USA 101:17528–17532.PubMedGoogle Scholar
  103. Messier, B., Leblond, C.P., Smart, I. 1958. Presence of DNA synthesis and mitosis in the brain of young adult mice. Exptl. Cell. Res. 14:224–226.Google Scholar
  104. Miale, I.L., Sidman, R.L. 1961. An autoradiograpic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4:277–296.PubMedGoogle Scholar
  105. Mooney, R. 2009. Neural mechanisms for learned birdsong. Learn. Mem. 16:655–669.PubMedGoogle Scholar
  106. Mundinger, P. 1970. Vocal imitation and individual recognition of finch calls. Science 168:480–482.PubMedGoogle Scholar
  107. Nordeen, E.J., Nordeen, K.W. 1988. Sex and regional differences in the incorporation of neurons born during song learning in zebra finches. J. Neurosci. 8:2869–2874.PubMedGoogle Scholar
  108. Nottebohm, F. 1971. Neural lateralization of vocal control in a passerine bird. I. Song. J. Exp. Zool. 177:229–261.PubMedGoogle Scholar
  109. Nottebohm, F. 1972a. The origins of vocal learning. Am. Nat. 106:116–140.Google Scholar
  110. Nottebohm, F. 1972b. Neural lateralization of vocal control in a passerine bird. II. Subsong, calls and a theory of vocal learning. J. Exp. Zool. 179:35–49.Google Scholar
  111. Nottebohm, F. 1980a. Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res. 189:429–436.PubMedGoogle Scholar
  112. Nottebohm, F. 1980b. Brain pathways for vocal learning in birds: a review of the first 10 years. In “Progress in Psychobiology and Physiological Psychology”, J.M.S. Sprage, A.N.E. Epstein, eds., vol. 9, pp. 85–124. Academic Press, New York.Google Scholar
  113. Nottebohm, F. 1981. A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science 214:1368–1370.PubMedGoogle Scholar
  114. Nottebohm, F. 1984. Birdsong as a model in which to study brain processes related to learning. Condor 86:227–236.PubMedGoogle Scholar
  115. Nottebohm, F. 1985. Neuronal replacement in adulthood. In “Hope for a New Neurology”,F. Nottebohm, ed., Ann. N.Y. Acad. Sci., vol 457, pp. 143–161.Google Scholar
  116. Nottebohm, F. 1989. From birdsong to neurogenesis. Sci. Am. 260:74–79.PubMedGoogle Scholar
  117. Nottebohm, F. 1993. The search for neural mechanisms that define the sensitive period for song learning in birds. Netherlands J. Zoology.PubMedGoogle Scholar
  118. Nottebohm, F., Arnold, A.P. 1976. Sexual dimorphism in vocal control areas of the songbird brain, Science 194:211–213.PubMedGoogle Scholar
  119. Nottebohm, F., Nottebohm, M.E. 1971. Vocalizations of breeding behavior of surgically deafened ring doves, Streptopelia risoria. Anim. Behav. 19:313–327.PubMedGoogle Scholar
  120. Nottebohm, F., Nottebohm, M.E. 1978. Relationship between song repertoire and age in the canary, Serinus canarius. Z. Tierpsychol. 46:298–305.Google Scholar
  121. Nottebohm, F., Stokes, T.M., Leonard, C.M. 1976. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165:457–486.PubMedGoogle Scholar
  122. Nottebohm, F., Kasparian, S., Pandazis, C. 1981. Brain space for a learned task. Brain Res. 213:99–109.PubMedGoogle Scholar
  123. Nottebohm, F., Kelley, D.B., Paton, J.A. 1982. Connections of vocal control nuclei in the canary telencephalon. J. Comp. Neurol. 207:344–357.PubMedGoogle Scholar
  124. Nottebohm, F., Nottebohm, M.E., Crane, L.A. 1986. Developmental and seasonal changes in canary song and their relation to changes in the anatomy of song-control nuclei. Behav. Neural. Biol. 46:445–471.PubMedGoogle Scholar
  125. Nottebohm, F., Nottebohm, M.E., Crane, L.A., Wingfield, J.C. 1987. Seasonal changes in gonadal hormone levels of adult male canaries and their relation to song. Behav. Neural. Biol. 47:197–211.PubMedGoogle Scholar
  126. Nottebohm, F. 1993. The search for neural mechanisms that define the sensitive period for song learning in birds. Netherlands J. Zoology.PubMedGoogle Scholar
  127. Nottebohm, F., O’Loughlin, B., Gould, K., Yohay, C., Alvarez-Buylla, A. 1994. The life span of new neurons in a song control nucleus of the canary brain depends on time of year when these cells are born. Proc. Natl. Acad. Sci. USA 91:7849–7853.PubMedGoogle Scholar
  128. Oelveczky, B.P., Andalman, A.S., Fee, M.S. 2005. Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol. 3:902–908, e153.Google Scholar
  129. Okuhata, S., Saito, N. 1987. Synaptic connections of thalamo-cerebral vocal nuclei of the canary. Brain Res. Bull. 18:35–44.PubMedGoogle Scholar
  130. Paton, J.A., Nottebohm, F. 1984. Neurons generated in the adult brain are recruited into functional circuits. Science 225:1046–1048.PubMedGoogle Scholar
  131. Raisman, G., Field, P.M. 1971. Sexual dimorphism in the preoptic area of the brain. Science 173:731–733.PubMedGoogle Scholar
  132. Rakic, P. 1985a. Limits of neurogenesis in primates. Science 227:154–156.Google Scholar
  133. Rakic, P. 1985b. DNA synthesis and cell division in the adult primate brain. In “Hope for a New Neurology”, F. Nottebohm, ed., Ann. N.Y. Acad. Sci., vol 457, pp. 193–211.Google Scholar
  134. Rakic, P. 2002. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat. Rev. Neurosci. 3:65–71.PubMedGoogle Scholar
  135. Rasika, S., Nottebohm, F., Alvarez-Buylla, A. 1994. Testosterone increases the recruitment and/or survival of new high vocal center neurons in adult female canaries. Proc. Natl. Acad. Sci. USA 91:7854–7858.PubMedGoogle Scholar
  136. Rasika, S., Alvarez-Buylla, A., Nottebohm, F. 1999. BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. Neuron 22:53–62.PubMedGoogle Scholar
  137. Raymond, P.A., Easter, S.S. 1983. Postembryonic growth of the optic tectum in goldfish.I. Location of germinal cells and numbers of neurons produced. J. Neurosci. 3:1077–1091.PubMedGoogle Scholar
  138. Roberts, T.F., Tschida, K.A., Klein, M.E., Mooney, R. 2010. Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature 463:948–952.PubMedGoogle Scholar
  139. Roeder, K.D. 1962. Neural mechanisms of animal behavior. Am. Zool. 2:105–115.Google Scholar
  140. Schaper, A. 1894. Die morphologische und histologische Entwicklung des Kleinhirns. Morphol. Jahrb, 21:625–670.Google Scholar
  141. Scharff, C., Nottebohm, F. 1991. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J. Neurosci. 11:2896–2913.PubMedGoogle Scholar
  142. Scott, B.B., Lois, C. 2007. Developmental origin and identity of song system neurons born during vocal learning in songbirds. J. Comp. Neurol. 502:202–214.PubMedGoogle Scholar
  143. Seri, B., Garcia-Verdugo, J.M., McEwen, B.S., Alvarez-Buylla, A. 2001. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21:7154–7160.Google Scholar
  144. Simpson, H.B., Vicario, D.S. 1991. Early estrogen treatment of female zebra finches masculinizes the brain pathway for learned vocalizations. J. Neurobiol. 22:777–793.PubMedGoogle Scholar
  145. Smart, I. 1961. The subependymal layer of mouse brain and its cell production as shown by radioautography after thymidine-H3 injection. J. Comp. Neurol. 116:325–348.Google Scholar
  146. Stokes, T.C., Leonard, C.M., Nottebohm, F. 1974. The telencephalon, diencephalon and mesencephalon of the canary, Serinus canaria, in stereotaxic coordinates. J. Comp. Neurol. 156:337–374.PubMedGoogle Scholar
  147. Sugita, N. 1918. Comparative studies on the growth of the cerebral cortex. V., pts. I and 11. J. Comp. Neur. 30:61–117.PubMedGoogle Scholar
  148. Thorpe, W.H. 1954. The process of song learning in the chaffinch as studied by means of the sound spectrograph. Nature 173:465–469.Google Scholar
  149. Thorpe, W.H. 1955. Comments on the “bird fancyer’s delight” together with notes on imitation in the subsong of the chaffinch. Ibis 97:247–251.Google Scholar
  150. Thorpe, W.H. 1958. The learning of song patterns by birds, with especial reference to the song of the chaffinch, Fringilla coelebs. Ibis 100:535–570.Google Scholar
  151. Thorpe, W.H., Pilcher, P.M. 1958. The nature and characteristics of sub-song. Br. Birds 51:509–514.Google Scholar
  152. Uzman, L.L. 1960. The histogenesis of the mouse cerebellum as studied by its tritiated thymidine uptake. J. Comp. Neurol. 114:137–159.PubMedGoogle Scholar
  153. Vates, G.E., Nottebohm, F. 1995. Feedback circuitry within a song learning pathway. Proc. Natl. Acad. Sci. USA 92:5139–5143.Google Scholar
  154. Vates, G.E., Broome, B.M., Mello, C.V., Nottebohm, F. 1996. Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taeniopygia guttata). J. Comp. Neurol. 366:613–642.PubMedGoogle Scholar
  155. Vates, G.E., Vicario, D.S., Nottebohm, F. 1997. Reafferent thalamo-“cortical” loops in the song system of oscine songbirds. J. Comp. Neurol. 380:275–290.PubMedGoogle Scholar
  156. von Holst, E. 1935. Ueber den Prozess der zentralnervoesen Koordination. Pflueg. Arch. ges. Physiol. 236:149–158.Google Scholar
  157. von Holst, E., von Saint Paul, U. 1960. Vom Wirkungsgefuege der Triebe. Naturwissenschaften 47:409–422.Google Scholar
  158. Wade, J., Arnold, A.P. 1996. Functional testicular tissue does not masculinize development of the zebra finch song system. Proc. Natl. Acad. Sci. USA 93:5264–5268.PubMedGoogle Scholar
  159. Waser, M.S., Marler, P. 1977. Song learning in canaries. J. Comp. Physiol. Psychol. 91:1–7.Google Scholar
  160. Wiersma, C.A.G. 1962. The organization of the arthropod central nervous system. Am. Zool. 2:67–78.Google Scholar
  161. Wilbrecht, L., Crionas, A., Nottebohm, F. 2002a. Experience affects recruitment of new neurons but not adult neuron number. J. Neurosci. 22:825–831.PubMedGoogle Scholar
  162. Wilbrecht, L., Petersen, T., Nottebohm, 2002b. Bilateral LMAN lesions cancel differences in HVC neuronal recruitment induced by unilateral syringeal denervation. J. Comp. Physiol. A 188:909–915.Google Scholar
  163. Wilbrecht, L., Williams, H., Gangadhar, N., Nottebohm, F. 2006. High levels of new neuron addition persist when the sensitive period for song learning is experimentally prolonged. J. Neurosci. 26:9135–9141.PubMedGoogle Scholar
  164. Williams, H., Nottebohm, F. 1985. Auditory responses in avian vocal motor neurons: a motor theory for song perception in birds. Science 229:279–282.PubMedGoogle Scholar
  165. Williams, H., Crane, L.A., Hale, T.K., Esposito, M.A., Nottebohm, F. 1992. Right side dominance for song control in the zebra finch. J. Neurobiol. 23:1006–1020.PubMedGoogle Scholar
  166. Wilson, D.M. 1961. The central nervous control of flight in the locust. J. Exp. Biol. 38:471–490.Google Scholar
  167. Yu, A.C., Margoliash, D. 1996. Temporal hierarchical control of singing in birds. Science 273:1871–1875.PubMedGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations