Skip to main content

Evolutionary Diversification of Visual Opsin Genes in Fish and Primates

  • Chapter
From Genes to Animal Behavior

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

Among vertebrates, fish and primates are highly polymorphic in their color vision. This diversity likely reflects the variability in light environments inhabited by these species. Gene duplications and allelic differentiation of opsin genes play an important role in the evolution of color vision in fish and primates. Studies have shown that gene duplications of opsins have occurred repeatedly during fish evolution, often accompanied by differentiation of spectral sensitivity and ­spatiotemporal expression patterns in the retina, which possibly enabled different color sensitivities between upward and downward vision. Interestingly, a similar regulatory mechanism for the expression of duplicated opsin genes, in which a single regulatory region controls the array of duplicated opsin genes, has evolved independently in fish and primates. However, this regulatory mechanism has resulted in different consequences for fish and primates: different sights by visual angles in fish and trichromatic color vision in primates. New World monkeys have the single-copy but multiallelic M/LWS opsin gene and hence exhibit an extensive intraspecific polymorphism of color vision. Behavioral observations of New World monkeys in the wild have revealed surprising findings, including that dichromatic monkeys perform better catching camouflaged insects than their trichromatic group mates and that these dichromats can be as good as trichromats when foraging for fruits. Interdisciplinary studies that emphasize a study of genes and behaviors will continue to uncover surprising variations of color vision and promote our understanding of the adaptive significance of color vision in evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cis regulatory element (or region): A region of DNA that regulates the transcription of genes which are physically linked to the region. It is often a binding site of transcription factors and is often located in the upstream region to the gene it controls.

  2. 2.

    New World monkeys: a group of primates, platyrrhines, that inhabit Central and South America. The group contains three families – Atelidae, Pitheciidae, Cebidae – that separated from the ancestor of catarrhines (Old World monkeys, apes, and humans) about 40 million years ago.

  3. 3.

    Color space: a conceptual space – such as red-green-blue (RGB), CIE, and MacLeod-Boynton – in which a color is defined numerically as a point.

References

  • Ahnelt PK, Kolb H (2000) The mammalian photoreceptor mosaic-adaptive design. Prog Retin Eye Res 19:711–777

    Article  PubMed  CAS  Google Scholar 

  • Allen G (1879) The color sense: its origin and development. Trubner & Co, London

    Google Scholar 

  • Archer S, Hope A, Partridge JC (1995) The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc R Soc Lond B 262:289–295

    Article  CAS  Google Scholar 

  • Asaoka Y, Mano H, Kojima D et al (2002) Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish. Proc Natl Acad Sci USA 99:15456–15461

    Article  PubMed  CAS  Google Scholar 

  • Caine NG, Mundy NI (2000) Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food colour. Proc R Soc Lond B 267:439–444

    Article  CAS  Google Scholar 

  • Caine NG, Surridge AK, Mundy NI (2003) Dichromatic and trichromatic Callithrix geoffroyi differ in relative foraging ability for red-green color-camouflaged and non-camouflaged food. Int J Primatol 24:1163–1175

    Article  Google Scholar 

  • Carleton KL, Kocher TD (2001) Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol Biol Evol 18:1540–1550

    Article  PubMed  CAS  Google Scholar 

  • Carleton KL, Spady TC, Streelman JT et al (2008) Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol 6:22

    Article  PubMed  Google Scholar 

  • Changizi MA, Zhang Q, Shimojo S (2006) Bare skin, blood and the evolution of primate color vision. Biol Lett 2:217–221

    Article  PubMed  Google Scholar 

  • Cheng CL, Novales Flamarique I (2004) Opsin expression: new mechanism for modulating colour vision. Nature 428:279

    Article  PubMed  CAS  Google Scholar 

  • Chinen A, Hamaoka T, Yamada Y et al (2003) Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163:663–675

    PubMed  CAS  Google Scholar 

  • Chinen A, Matsumoto Y, Kawamura S (2005a) Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation. Mol Biol Evol 22:1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Chinen A, Matsumoto Y, Kawamura S (2005b) Spectral differentiation of blue opsins between phylogenetically close but ecologically distant goldfish and zebrafish. J Biol Chem 280:9460–9466

    Article  PubMed  CAS  Google Scholar 

  • Collin SP, Knight MA, Davies WL et al (2003) Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol 13:R864–R865

    Article  PubMed  CAS  Google Scholar 

  • Davies WL, Carvalho LS, Cowing JA et al (2007) Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol 17:R161–R163

    Article  PubMed  CAS  Google Scholar 

  • Davies WL, Collin SP, Hunt DM (2009) Adaptive gene loss reflects differences in the visual ecology of basal vertebrates. Mol Biol Evol 26:1803–1809

    Article  PubMed  CAS  Google Scholar 

  • De Araujo MF, Lima EM, Pessoa VF (2006) Modeling dichromatic and trichromatic sensitivity to the color properties of fruits eaten by squirrel monkeys (Saimiri sciureus). Am J Primatol 68:1129–1137

    Article  PubMed  Google Scholar 

  • Deeb SS (2006) Genetics of variation in human color vision and the retinal cone mosaic. Curr Opin Genet Dev 16:301–307

    Article  PubMed  CAS  Google Scholar 

  • Dominy NJ (2004) Color as an indicator of food quality to anthropoid primates: ecological evidence and an evolutionary scenario. In: Ross C, Kay RF (eds) Anthropoid origins. Kluwer Academic, New York, pp 599–628

    Google Scholar 

  • Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nature 410:363–366

    Article  PubMed  CAS  Google Scholar 

  • Dominy NJ, Garber PA, Bicca-Marques JC et al (2003a) Do female tamarins use visual cues to detect fruit rewards more successfully than do males? Anim Behav 66:829–837

    Article  Google Scholar 

  • Dominy NJ, Svenning JC, Li WH (2003b) Historical contingency in the evolution of primate color vision. J Hum Evol 44:25–45

    Article  PubMed  Google Scholar 

  • Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94

    Article  PubMed  CAS  Google Scholar 

  • Fernandez AA, Morris MR (2007) Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. Am Nat 170:10–20

    Article  PubMed  Google Scholar 

  • Fleagle JG (1999) Primate adaptation and evolution, 2nd edn. Academic, San Diego

    Google Scholar 

  • Foster DH, Nascimento SM (1994) Relational colour constancy from invariant cone-excitation ratios. Proc R Soc Lond B 257:115–121

    Article  CAS  Google Scholar 

  • Goldsmith TH (1990) Optimization, constraint, and history in the evolution of eyes. Q Rev Biol 65:281–322

    Article  PubMed  CAS  Google Scholar 

  • Govardovskii VI (1983) On the role of oil drops in colour vision. Vision Res 23:1739–1740

    Article  PubMed  CAS  Google Scholar 

  • Hamaoka T, Takechi M, Chinen A et al (2002) Visualization of rod photoreceptor development using GFP-transgenic zebrafish. Genesis 34:215–220

    Article  PubMed  CAS  Google Scholar 

  • Heesy CP, Ross CF, Demes B (2007) Oculomotor stability and the functions of the postorbital bar and septum. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 257–283

    Chapter  Google Scholar 

  • Hiramatsu C, Melin AD, Aureli F et al (2008) Importance of achromatic contrast in short-range fruit foraging of primates. PLoS One 3:e3356

    Article  PubMed  Google Scholar 

  • Hiramatsu C, Melin AD, Aureli F et al (2009) Interplay of olfaction and vision in fruit foraging of spider monkeys. Anim Behav 77:1421–1426

    Article  Google Scholar 

  • Hiwatashi T, Okabe Y, Tsutsui T et al (2010) An explicit signature of balancing selection for color vision variation in New World monkeys. Mol Biol Evol 27:453–464

    Google Scholar 

  • Jacobs GH (1993) The distribution and nature of colour vision among the mammals. Biol Rev 68:413–471

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GH (1999) Vision and behavior in primates. In: Archer SN, Djamgoz MBA, Loew ER et al (eds) Adaptive mechanisms in the ecology of vision. Kluwer Academic, Dordrecht, pp 629–650

    Chapter  Google Scholar 

  • Jacobs GH, Nathans J (2009) The evolution of primate color vision. Sci Am 300:56–63

    Article  PubMed  Google Scholar 

  • Jacobs GH, Williams GA, Cahill H et al (2007) Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 315:1723–1725

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Takeshita K, Tsujimura T et al (2005) Evolutionarily conserved and divergent regulatory sequences in the fish rod opsin promoter. Comp Biochem Physiol B 141:391–399

    Article  PubMed  Google Scholar 

  • Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision–behavioural tests and physiological concepts. Biol Rev 78:81–118

    Article  PubMed  Google Scholar 

  • Kennedy BN, Vihtelic TS, Checkley L et al (2001) Isolation of a zebrafish rod opsin promoter to generate a transgenic zebrafish line expressing enhanced green fluorescent protein in rod photoreceptors. J Biol Chem 276:14037–14043

    PubMed  CAS  Google Scholar 

  • Levine JS, MacNichol EF Jr (1982) Color vision in fishes. Sci Am 246:140–149

    Article  Google Scholar 

  • Lucas PW, Darvell BW, Lee PKD et al (1998) Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol 69:139–154

    Article  PubMed  CAS  Google Scholar 

  • Lucas PW, Dominy NJ, Riba-Hernandez P et al (2003) Evolution and function of routine trichromatic vision in primates. Evolution 57:2636–2643

    PubMed  Google Scholar 

  • Luo W, Williams J, Smallwood PM et al (2004) Proximal and distal sequences control UV cone pigment gene expression in transgenic zebrafish. J Biol Chem 279:19286–19293

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Oxford University Press, Oxford

    Google Scholar 

  • MacLeod DI, Boynton RM (1979) Chromaticity diagram showing cone excitation by stimuli of equal luminance. J Opt Soc Am 69:1183–1186

    Article  PubMed  CAS  Google Scholar 

  • Martin PR (1998) Colour processing in the primate retina: recent progress. J Physiol 513(Pt 3):631–638

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto Y, Fukamachi S, Mitani H et al (2006) Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene 371:268–278

    Article  PubMed  CAS  Google Scholar 

  • Maximov VV (2000) Environmental factors which may have led to the appearance of colour vision. Philos Trans R Soc Lond B 355:1239–1242

    Article  CAS  Google Scholar 

  • Melin AD, Fedigan LM, Hiramatsu C et al (2007) Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins (Cebus capucinus). Anim Behav 73:205–214

    Article  Google Scholar 

  • Melin AD, Fedigan LM, Hiramatsu C et al (2008) Polymorphic color vision in white-faced capuchins (Cebus capucinus): is there foraging niche divergence among phenotypes? Behav Ecol Sociobiol 62:659–670

    Article  Google Scholar 

  • Melin AD, Fedigan LM, Young HC et al (2010) Can color vision variation explain sex differences in invertebrate foraging by capuchin monkeys? Curr Zool 56:300–312

    Google Scholar 

  • Mollon JD, Bowmaker JK, Jacobs GH (1984) Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B 222:373–399

    Article  PubMed  CAS  Google Scholar 

  • Morgan MJ, Adam A, Mollon JD (1992) Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proc R Soc Lond B 248:291–295

    Article  CAS  Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, Chichester

    Google Scholar 

  • Nathans J (1987) Molecular biology of visual pigments. Annu Rev Neurosci 10:163–194

    Article  PubMed  CAS  Google Scholar 

  • Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202

    Article  PubMed  CAS  Google Scholar 

  • Osorio D, Vorobyev M (1996) Colour vision as an adaptation to frugivory in primates. Proc R Soc Lond B 263:593–599

    Article  CAS  Google Scholar 

  • Parry JW, Carleton KL, Spady T et al (2005) Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Curr Biol 15:1734–1739

    Article  PubMed  CAS  Google Scholar 

  • Pokorny J, Shevell SK, Smith VC (1991) Colour appearance and colour constancy. In: Cronly-Dillon JR (ed) Vision and visual dysfunction, vol 6. MacMillan, London, pp 43–61

    Google Scholar 

  • Regan BC, Julliot C, Simmen B et al (1998) Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res 38:3321–3327

    Article  PubMed  CAS  Google Scholar 

  • Regan BC, Julliot C, Simmen B et al (2001) Fruits, foliage and the evolution of primate colour vision. Philos Trans R Soc Lond B 356:229–283

    Article  CAS  Google Scholar 

  • Riba-Hernandez P, Stoner KE, Osorio D (2004) Effect of polymorphic colour vision for fruit detection in the spider monkey Ateles geoffroyi, and its implications for the maintenance of polymorphic colour vision in platyrrhine monkeys. J Exp Biol 207:2465–2470

    Article  PubMed  Google Scholar 

  • Robinson SR (1994) Early vertebrate color vision. Nature 367:121

    Article  Google Scholar 

  • Saito A, Kawamura S, Mikami A et al (2005a) Demonstration of a genotype–phenotype correlation in the polymorphic color vision of a non-callitrichine New World monkey, capuchin (Cebus apella). Am J Primatol 67:471–485

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Mikami A, Kawamura S et al (2005b) Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates. Am J Primatol 67:425–436

    Article  PubMed  Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS et al (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Yokoyama S (2003) Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 100:8308–8313

    Article  PubMed  CAS  Google Scholar 

  • Smallwood PM, Wang Y, Nathans J (2002) Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proc Natl Acad Sci USA 99:1008–1011

    Article  PubMed  CAS  Google Scholar 

  • Smith AC, Buchanan-Smith HM, Surridge AK et al (2003a) Leaders of progressions in wild mixed-species troops of saddleback (Saguinus fuscicollis) and mustached tamarins (S. mystax), with emphasis on color vision and sex. Am J Primatol 61:145–157

    Article  PubMed  Google Scholar 

  • Smith AC, Buchanan-Smith HM, Surridge AK et al (2003b) The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). J Exp Biol 206:3159–3165

    Article  PubMed  Google Scholar 

  • Smith AC, Buchanan-Smith HM, Surridge AK et al (2005) Factors affecting group spread within wild mixed-species troops of saddleback and mustached tamarins. Int J Primatol 26:337–355

    Article  Google Scholar 

  • Spady TC, Parry JW, Robinson PR et al (2006) Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol Biol Evol 23:1538–1547

    Article  PubMed  CAS  Google Scholar 

  • Stoner KE, Riba-Hernandez P, Lucas PW (2005) Comparative use of color vision for frugivory by sympatric species of platyrrhines. Am J Primatol 67:399–409

    Article  PubMed  Google Scholar 

  • Sumner P, Mollon JD (2000) Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol 203:1963–1986

    PubMed  CAS  Google Scholar 

  • Sumner P, Mollon JD (2003) Colors of primate pelage and skin: objective assessment of conspicuousness. Am J Primatol 59:67–91

    Article  PubMed  Google Scholar 

  • Surridge AK, Osorio D, Mundy NI (2003) Evolution and selection of trichromatic vision in primates. Trends Ecol Evol 18:198–205

    Article  Google Scholar 

  • Takechi M, Kawamura S (2005) Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development. J Exp Biol 208:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Takechi M, Hamaoka T, Kawamura S (2003) Fluorescence visualization of ultraviolet-sensitive cone photoreceptor development in living zebrafish. FEBS Lett 553:90–94

    Article  PubMed  CAS  Google Scholar 

  • Takechi M, Seno S, Kawamura S (2008) Identification of cis-acting elements repressing blue opsin expression in zebrafish UV cones and pineal cells. J Biol Chem 283:31625–31632

    Article  PubMed  CAS  Google Scholar 

  • Tan Y, Li WH (1999) Trichromatic vision in prosimians. Nature 402:436

    Article  Google Scholar 

  • Terai Y, Mayer WE, Klein J et al (2002) The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proc Natl Acad Sci USA 99:15501–15506

    Article  PubMed  CAS  Google Scholar 

  • Terai Y, Seehausen O, Sasaki T et al (2006) Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biol 4:2244–2251

    Article  CAS  Google Scholar 

  • Terborgh J (1986) Keystone plant resources in the tropical forest. In: Soule M (ed) Conservation biology: science of scarcity and diversity. Sinauer, Sunderland, pp 330–344

    Google Scholar 

  • Tsujimura T, Chinen A, Kawamura S (2007) Identification of a locus control region for quadruplicated green-sensitive opsin genes in zebrafish. Proc Natl Acad Sci USA 104:12813–12818

    Article  PubMed  CAS  Google Scholar 

  • Vogel ER, Neitz M, Dominy NJ (2007) Effect of color vision phenotype on the foraging of wild white-faced capuchins, Cebus capucinus. Behav Ecol 18:292–297

    Article  Google Scholar 

  • Vorobyev M (2004) Ecology and evolution of primate colour vision. Clin Exp Optom 87:230–238

    Article  PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills

    Book  Google Scholar 

  • Wang Y, Macke JP, Merbs SL et al (1992) A locus control region adjacent to the human red and green visual pigment genes. Neuron 9:429–440

    Article  PubMed  CAS  Google Scholar 

  • Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Wittbrodt J, Shima A, Schartl M (2002) Medaka – a model organism from the far East. Nat Rev Genet 3:53–64

    Article  PubMed  CAS  Google Scholar 

  • Yamada ES, Marshak DW, Silveira LC et al (1998) Morphology of P and M retinal ganglion cells of the bush baby. Vision Res 38:3345–3352

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S (1997) Molecular genetic basis of adaptive selection: examples from color vision in vertebrates. Annu Rev Genet 31:315–336

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S (2000a) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385–419

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S (2000b) Phylogenetic analysis and experimental approaches to study color vision in vertebrates. Methods Enzymol 315:312–325

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB, Blow NS (2000) Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci USA 97:7366–7371

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Yang H, Starmer WT (2008) Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics 179:2037–2043

    Article  PubMed  Google Scholar 

  • Zhang H, Futami K, Horie N et al (2000) Molecular cloning of fresh water and deep-sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation. FEBS Lett 469:39–43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the Japan Society for the Promotion of Science (Grants-in-Aid for Scientific Research A 19207018 and 22247036) and the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants-in-Aid for Scientific Research on Priority Areas “Comparative Genomics” 20017008 and “Cellular Sensor” 21026007) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Kawamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Kawamura, S. (2011). Evolutionary Diversification of Visual Opsin Genes in Fish and Primates. In: Inoue-Murayama, M., Kawamura, S., Weiss, A. (eds) From Genes to Animal Behavior. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53892-9_16

Download citation

Publish with us

Policies and ethics