Skip to main content

Speciation of Cichlid Fishes by Sensory Drive

  • Chapter
From Genes to Animal Behavior

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

What is the mechanism that drives speciation? This question is a major issue for Darwinian evolution and remains to be solved. Recently, a small teleost fish has provided an opportunity to study speciation. The lakes of East Africa harbor more than 1,000 closely related cichlid fishes. These populations are an ideal model system for understanding vertebrate speciation. In particular, the cichlid fish of Lake Victoria provide a unique opportunity to understand the molecular basis of speciation. Studies on these cichlids have led researchers to propose that the long-wavelength-sensitive opsin (LWS) gene was a strong candidate gene that has been responsible for speciation. Further analyses of the LWS gene and breeding coloration showed speciation by sensory drive in which adaptation of the sensory system for a particular environment drives the divergence of mating signals and leads to reproductive isolation. Therefore, sensory drive speciation may be one of the key mechanisms underlying the diversification of African cichlids. Moreover, we discuss the possibility of reproductive isolation by other sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Clines consist of forms of species that exhibit gradual phenotypic differences over a geographic area as a result of environmental heterogeneity.

  2. 2.

    Adaptive radiation is rapid evolutionary radiation characterized by an increase in the morphological and ecological diversity of a single lineage.

  3. 3.

    Polygyny is a form of mating in which a male mates with two or more females.

  4. 4.

    Sexual dimorphism is the systematic difference in form between individuals of different sex in the same species.

  5. 5.

    Agonistic display is the combative or territorial behavior of an animal that feels threatened by another animal of the same species.

References

  • Amorim MCP, Knight ME, Stratoudakis Y, Turner GF (2004) Differences in sounds made by courting males of three closely related Lake Malawi cichlid species. J Fish Biol 65:1358–1371

    Article  Google Scholar 

  • Blais J, Plenderleith M, Rico C, Taylor MI, Seehausen O, van Oosterhout C, Turner GF (2009) Assortative mating among Lake Malawi cichlid fish populations is not simply predictable from male nuptial colour. BMC Evol Biol 9:53

    Article  PubMed  Google Scholar 

  • Boughman JW (2001) Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411:944–948

    Article  PubMed  CAS  Google Scholar 

  • Boughman JW (2002) How sensory drive can promote speciation. Trends Ecol Evol 17:571–577

    Article  Google Scholar 

  • Carleton KL, Kocher TD (2001) Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol Biol Evol 18:1540–1550

    Article  PubMed  CAS  Google Scholar 

  • Carleton KL, Harosi FI, Kocher TD (2000) Visual pigments of African cichlid fishes: evidence for ultraviolet vision from microspectrophotometry and DNA sequences. Vision Res 40:879–890

    Article  PubMed  CAS  Google Scholar 

  • Carleton KL, Spady TC, Streelman JT, Kidd MR, McFarland WN, Loew ER (2008) Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol 6:22

    Article  PubMed  Google Scholar 

  • Cohen AS, Soreghan MJ, Scholz CA (1993) Estimating the age of formation of lakes, an example from Lake Tanganyika, east African Rift system. Geology 21:511–514

    Article  CAS  Google Scholar 

  • Cohen AS, Lezzar KE, Tiercelin JJ, Soreghan M (1997) New palaeogeographic and lake-level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in a rift lake. Basin Res 9:107–132

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland

    Google Scholar 

  • Delvaux D (1995) Age of Lake Malawi (Nyasa) and water level fluctuations. Dept Geol Min Rapp Ann 1995:99–108

    Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:125–153

    Article  Google Scholar 

  • Fryer G, Iles TD (1972) The cichlid fishes of the great lakes of Africa: their biology and evolution. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Fujii R (2000) The regulation of motile in fish chromatophores. Pigment Cell Res 13:300–319

    Article  PubMed  CAS  Google Scholar 

  • Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF (2007a) Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol 24:1269–1282

    Article  PubMed  CAS  Google Scholar 

  • Genner MJ, Nichols P, Carvalho GR, Robinson RL, Shaw PW, Turner GF (2007b) Reproductive isolation among deep-water cichlid fishes of Lake Malawi differing in monochromatic male breeding dress. Mol Ecol 16:651–662

    Article  PubMed  Google Scholar 

  • Harosi FI (1994) An analysis of two spectral properties of vertebrate visual pigments. Vision Res 34:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Johnson TC, Scholz CA, Talbot MR, Kelts K, Ricketts RD (1996) Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 273:1091–1093

    Article  PubMed  CAS  Google Scholar 

  • Johnson TC, Kelts K, Odada E (2000) The Holocene history of Lake Victoria. Ambio 29:2–11

    Google Scholar 

  • Joyce DA, Lunt DH, Bills R, Turner GF, Katongo C, Duftner N, Sturmbauer C, Seehausen O (2005) An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435:90–95

    Article  PubMed  CAS  Google Scholar 

  • Kawata M, Shoji A, Kawamura S, Seehausen O (2007) A genetically explicit model of speciation by sensory drive within a continuous population in aquatic environments. BMC Evol Biol 7:99

    Article  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol Phylogenet Evol 2:158–165

    Article  PubMed  CAS  Google Scholar 

  • Konings A (1995) Malawi cichlids in their neural habitat, 2nd edn. Cichlid Press, St Leon-Rot

    Google Scholar 

  • Maan ME, Seehausen O, Söderberg L, Johnson L, Ripmeester EAP, Mrosso HDJ, Taylor MI, van Dooren TJM, van Alphen JJM (2004) Intraspecific sexual selection on a speciation trait, male coloration, in the Lake Victoria cichlid Pundamilia nyererei. Proc R Soc Lond B Biol Sci 271:2445–2452

    Article  Google Scholar 

  • Maan ME, Hofker KD, van Alphen JJM, Seehausen O (2006) Sensory drive in cichlid speciation. Am Nat 167:947–954

    Article  PubMed  Google Scholar 

  • Maeda K, Takeda M, Kamiya K, Aibara M, Mzighani SI, Nishida M, Mizoiri S, Sato T, Terai Y, Okada N, Tachida H (2009) Population structure of two closely related pelagic cichlids in Lake Victoria, Haplochromis pyrrhocephalus and H. laparogramma. Gene 441:67–73

    Article  PubMed  CAS  Google Scholar 

  • Mayer WE, Tichy H, Klein J (1998) Phylogeny of African cichlid fishes as revealed by molecular markers. Heredity 80:702–714

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553

    Article  PubMed  CAS  Google Scholar 

  • Nagl S, Tichy H, Mayer WE, Takahata N, Klein J (1998) Persistence of neutral polymorphisms in Lake Victoria cichlid fish. Proc Natl Acad Sci USA 95:14238–14243

    Article  PubMed  CAS  Google Scholar 

  • Nagl S, Tichy H, Mayer WE, Takezaki N, Takahata N, Klein J (2000) The origin and age of haplochromine fishes in Lake Victoria, East Africa. Proc R Soc Lond B 267:1049–1061

    Article  CAS  Google Scholar 

  • Nishida M (1991) Lake Tanganyika as an evolutionary reservoir of old lineages of East African cichlid fishes: inference from allozyme data. Experientia 47:974–979

    Article  Google Scholar 

  • Parry JW, Carleton KL, Spady T, Carboo A, Hunt DM, Bowmaker JK (2005) Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Curr Biol 15:1734–1739

    Article  PubMed  CAS  Google Scholar 

  • Plenderleith M, van Oosterhout C, Robinson RL, Turner GF (2005) Female preference for conspecific males based on olfactory cues in a Lake Malawi cichlid fish. Biol Lett 1:411–414

    Article  PubMed  Google Scholar 

  • Salzburger W, Meyer A, Baric S, Verheyen E, Sturmbauer C (2002) Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas. Syst Biol 1:113–135

    Article  Google Scholar 

  • Salzburger W, Mack T, Verheyen E, Meyer A (2005) Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol Biol 5:17

    Article  PubMed  Google Scholar 

  • Salzburger W, Braasch I, Meyer A (2007) Adaptive sequence evolution in a colour gene involved in the formation of the characteristic egg-dummies of male haplochromine cichlid fishes. BMC Biol 5:51

    Article  PubMed  Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  PubMed  Google Scholar 

  • Seehausen O (1996) Lake Victoria Rock Cichlids: taxonomy, ecology and distribution. Verduijn Cichlids, Zevenhuizen

    Google Scholar 

  • Seehausen O (2000) Explosive speciation rates and unusual species richness in Haplochromine cichlid fishes: effects of sexual selection Hulscher-Emeis. Adv Ecol Res 31:237–266

    Article  Google Scholar 

  • Seehausen O, van Alphen JJM (1998) The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex). Behav Ecol Sociobiol 42:1–8

    Article  Google Scholar 

  • Seehausen O, van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811

    Article  CAS  Google Scholar 

  • Seehausen O, Lippitsch E, Bouton N, Zwennes H (1998) Mbipi, the rock-dwelling cichlids of Lake Victoria: description of three new genera and fifteen new species (Teleostei). Ichthyol Explor Freshw 9:129–228

    Google Scholar 

  • Seehausen O, Mayhew PJ, Van Alphen JJM (1999) Evolution of colour patterns in East African cichlid fish. J Evol Biol 12:514–534

    Article  Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626

    Article  PubMed  CAS  Google Scholar 

  • Shichida Y (1999) Visual pigment: photochemistry and molecular evolution. In: Toyoda JI (ed) The retinal basis of vision. Elsevier Science, Amsterdam, pp 23–35

    Google Scholar 

  • Simões JM, Duarte IS, Fonseca PJ, Turner GF, Clara Amorim M (2008) Courtship and agonistic sounds by the cichlid fish Pseudotropheus zebra. J Acoust Soc Am 124:1332–1338

    Article  Google Scholar 

  • Smit SA, Anker GC (1997) Photopic sensitivity to red and blue light related to retinal differences in two zooplanktivorous haplochromine species (Teleostei, Cichlidae). Neth J Zool 47:9–20

    Article  Google Scholar 

  • Snoeks J, Ruber L, Verheyen E (1994) The Tanganyika problem: comments on the taxonomy and distribution patterns of its cichlid fauna. Arch Hydrobiol Beiheft Ergebnisse Limnol 44:355–372

    Google Scholar 

  • Spady TC, Seehausen O, Loew ER, Jordan RC, Kocher TD, Carleton KL (2005) Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol Biol Evol 6:1412–1422

    Article  Google Scholar 

  • Stiassny MLJ (1991) Phylogenetic intrarelationships of the family Cichlidae: an overview. In: Keenleyside MHA (ed) Cichlid fishes. Behavior, ecology and evolution. Chapman and Hall, London, pp 1–35

    Google Scholar 

  • Sturmbauer C, Meyer A (1992) Genetic divergence, speciation and morphological status in a lineage of African cichlid fishes. Nature 358:578–581

    Article  PubMed  CAS  Google Scholar 

  • Sugawara T, Terai Y, Okada N (2002) Natural selection of the rhodopsin gene during the adaptive radiation of East African Great Lakes cichlid fishes. Mol Biol Evol 19:1807–1811

    Article  PubMed  CAS  Google Scholar 

  • Sugawara T, Terai Y, Imai H, Turner GF, Koblmuller S, Sturmbauer C, Shichida Y, Okada N (2005) Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc Natl Acad Sci USA 102:5448–5453

    Article  PubMed  CAS  Google Scholar 

  • Sugie A, Terai Y, Ota R, Okada N (2004) The evolution of genes for pigmentation in African cichlid fishes. Gene 343:337–346

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Terai Y, Nishida M, Okada N (2001) Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol Biol Evol 18:2057–2066

    Article  PubMed  CAS  Google Scholar 

  • Terai Y, Mayer WE, Klein J, Tichy H, Okada N (2002a) The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proc Natl Acad Sci USA 99:15501–15506

    Article  PubMed  CAS  Google Scholar 

  • Terai Y, Morikawa N, Kawakami K, Okada N (2002b) Accelerated evolution of the surface amino acids in the WD-repeat domain encoded by the hagoromo gene in an explosively speciated lineage of East African cichlid fishes. Mol Biol Evol 19:574–578

    Article  PubMed  CAS  Google Scholar 

  • Terai Y, Takahashi K, Okada N (2003a) SINEs as probes for ancient explosion of speciation – a “hidden” adaptive radiation of African cichlids? Mol Biol Evol 20:924–930

    Article  PubMed  CAS  Google Scholar 

  • Terai Y, Morikawa N, Kawakami K, Okada N (2003b) The complexity of alternative splicing of hagoromo mRNAs is increased in an explosively speciated lineage in East African cichlids. Proc Natl Acad Sci USA 100:12798–12803

    Article  PubMed  CAS  Google Scholar 

  • Terai Y, Takezaki N, Mayer WE, Tichy H, Takahata N, Klein J, Okada N (2004) Phylogenetic relationships among East African haplochromine fishes as revealed by short interspersed elements (SINEs). J Mol Evol 58:64–78

    Article  PubMed  CAS  Google Scholar 

  • Terai Y, Seehausen O, Sasaki T, Takahashi K, Mizoiri S, Sugawara T, Sato T, Watanabe M, Konijnendijk N, Mrosso HDJ, Tachida H, Imai H, Shichida Y, Okada N (2006) Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biol 4:2244–2251

    Article  CAS  Google Scholar 

  • Turner GF, Seehausen O, Knight ME, Allender CJ, Robinson RL (2001) How many species of cichlid fishes are there in African lakes? Mol Ecol 10:793–806

    Article  PubMed  CAS  Google Scholar 

  • van der Meer HJ, Bowmaker JK (1995) Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav Evol 45:232–240

    Article  PubMed  Google Scholar 

  • Verzijden MN, ten Cate C (2007) Early learning influences species assortative mating preferences in Lake Victoria cichlid fish. Biol Lett 3:134–136

    Article  PubMed  Google Scholar 

  • Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385–419

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama R, Yokoyama S (1990) Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proc Natl Acad Sci USA 87:9315–9318

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Yokoyama R (1996) Adaptive evolution of photoreceptors and visual pigments in vertebrates. Annu Rev Ecol Syst 27:543–567

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohey Terai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Terai, Y., Okada, N. (2011). Speciation of Cichlid Fishes by Sensory Drive. In: Inoue-Murayama, M., Kawamura, S., Weiss, A. (eds) From Genes to Animal Behavior. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53892-9_15

Download citation

Publish with us

Policies and ethics