Skip to main content

Firing Correlation in Spiking Neurons with Watts–Strogatz Rewiring

  • Conference paper
Natural Computing

Abstract

The brain is organized as neuron assemblies with hierarchies of complex network connectivity. In 1998, Watts and Strogatz conjectured that the structures of most complex networks in the real world have the so-called small-world properties of a small mean path between nodes and a high cluster value, regardless of whether they are artificial networks, such as the Internet, or natural networks, such as the brain. Here we explore the nature of a small-world network of neuron assemblies by simulating the network structural dependence of Izhikevich’s spiking neuron model. The synchronized rhythmical firing is estimated in terms of rewiring probabilities, and the structural dependence of the firing correlation coefficient is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sakamoto, K., et al.: Discharge Synchrony during the Transition of Behavioral Goal Representations Encoded by Discharge Rates of Prefrontal Neurons. Cerebral Cortex 18, 2036–2045 (2008)

    Article  Google Scholar 

  2. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’Small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  3. Boccaletti, S., Latora, V., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Physics Reports 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  4. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Physics Reports 469, 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bassett, D.S., Bullmore, E.: Small-World Brain Networks. The Neuroscientist 12, 512–523 (2006)

    Article  Google Scholar 

  6. Zemanová, L., Zhou, C., Kurths, J.: Structural and functional clusters of complex brain networks. Physica D 224, 202–212 (2006)

    Article  MATH  Google Scholar 

  7. Brette, R., et al.: Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. 23, 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  8. Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Trans. Neural Networks 14, 1569–1572 (2003)

    Article  Google Scholar 

  9. Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Trans. Neural Networks 15, 1063–1070 (2004)

    Article  Google Scholar 

  10. Erdös, P., Renyi, A.: On random graphs. Publ. Math (Debrecen) 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  11. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 349–352 (1999)

    Google Scholar 

  12. Kanamaru, T., Aihara, K.: The effects of Watts-Strogatz’s rewiring to the synchronous firings in a pulse neural network with gap junctions. Technical Report of IEICE, vol. 107, pp. 175–180 (2008)

    Google Scholar 

  13. Kanamaru, T., Aihara, K.: Stochastic Synchrony of Chaos in a Pulse-Coupled Neural Network with Both Chemical and Electrical Synapses Among Inhibitory Neurons. Neural Computation 20, 1951–1972 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kamiya, A., et al.: A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nature Cell Biology 7, 1167–1178 (2005)

    Article  Google Scholar 

  15. Miswiring the Brain: Breakthrough of the year. Science 310, 1880–1885 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Tokyo

About this paper

Cite this paper

Yamanishi, T., Nishimura, H. (2010). Firing Correlation in Spiking Neurons with Watts–Strogatz Rewiring. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53868-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53868-4_41

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53867-7

  • Online ISBN: 978-4-431-53868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics