A Two-Dimensional Optimum-Time Firing Squad Synchronization Algorithm and Its Implementation

  • Hiroshi Umeo
  • Jean-Baptiste Yunès
  • Takuya Yamawaki
Conference paper
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 2)


The firing squad synchronization problem on cellular automata has been studied extensively for more than forty years, and a rich variety of synchronization algorithms have been proposed for not only one-dimensional arrays but two-dimensional arrays. In the present paper, we propose a new and simpler optimum-time synchronization algorithm that can synchronize any rectangle array of size m ×n with a general at one corner in m + n + max (m, n) − 3 steps. An implementation for the algorithm in terms of local transition rules is also given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control 10, 22–42 (1967)CrossRefGoogle Scholar
  2. 2.
    Beyer, W.T.: Recognition of topological invariants by iterative arrays. Ph.D. Thesis, p. 144. MIT (1969)Google Scholar
  3. 3.
    Gerken, H.D.: Über Synchronisations - Probleme bei Zellularautomaten. Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, p. 50 (1987)Google Scholar
  4. 4.
    Goto, E.: A minimal time solution of the firing squad problem. Dittoed course notes for Applied Mathematics 298, 52–59 (1962)Google Scholar
  5. 5.
    Grasselli, A.: Synchronization of cellular arrays: The firing squad problem in two dimensions. Information and Control 28, 113–124 (1975)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization problem. Theoretical Computer Science 50, 183–238 (1987)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.) Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading (1964)Google Scholar
  8. 8.
    Schmid, H.: Synchronisationsprobleme für zelluläre Automaten mit mehreren Generälen. Diplomarbeit, Universität Karsruhe (2003)Google Scholar
  9. 9.
    Shinahr, I.: Two- and three-dimensional firing squad synchronization problems. Information and Control 24, 163–180 (1974)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Szwerinski, H.: Time-optimum solution of the firing-squad-synchronization-problem for n-dimensional rectangles with the general at an arbitrary position. Theoretical Computer Science 19, 305–320 (1982)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Umeo, H.: A simple design of time-efficient firing squad synchronization algorithms with fault-tolerance. IEICE Trans. on Information and Systems E87-D(3), 733–739 (2004)Google Scholar
  12. 12.
    Umeo, H.: Firing squad synchronization problem in cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 4, pp. 3537–3574. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Umeo, H., Hisaoka, M., Akiguchi, S.: Twelve-state optimum-time synchronization algorithm for two-dimensional rectangular cellular arrays. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 214–223. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Umeo, H., Hisaoka, M., Sogabe, T.: A survey on optimum-time firing squad synchronization algorithms for one-dimensional cellular automata. Intern. J. of Unconventional Computing 1, 403–426 (2005)Google Scholar
  15. 15.
    Umeo, H., Hisaoka, M., Teraoka, M., Maeda, M.: Several new generalized linear- and optimum-time synchronization algorithms for two-dimensional rectangular arrays. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 223–232. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Umeo, H., Maeda, M., Hisaoka, M., Teraoka, M.: A state-efficient mapping scheme for designing two-dimensional firing squad synchronization algorithms. Fundamenta Informaticae 74, 603–623 (2006)MathSciNetMATHGoogle Scholar
  17. 17.
    Umeo, H., Uchino, H.: A new time-optimum synchronization algorithm for rectangle arrays. Fundamenta Informaticae 87(2), 155–164 (2008)MathSciNetMATHGoogle Scholar
  18. 18.
    Waksman, A.: An optimum solution to the firing squad synchronization problem. Information and Control 9, 66–78 (1966)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Tokyo 2010

Authors and Affiliations

  • Hiroshi Umeo
    • 1
  • Jean-Baptiste Yunès
    • 2
  • Takuya Yamawaki
    • 1
  1. 1.Univ. of Osaka Electro-CommunicationOsakaJapan
  2. 2.LIAFA - Universite Paris 7 Denis DiderotParisFrance

Personalised recommendations