A Transition Rule Set for the First 2-D Optimum-Time Synchronization Algorithm

  • Hiroshi Umeo
  • Kaori Ishida
  • Koutarou Tachibana
  • Naoki Kamikawa
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 2)

Abstract

The firing squad synchronization problem on cellular automata has been studied extensively for more than forty years, and a rich variety of synchronization algorithms have been proposed for two-dimensional cellular arrays. In the present paper, we reconstruct a real-coded transition rule set for an optimum-time synchronization algorithm proposed by Shinahr [11], known as the first optimum-time synchronization algorithm for two-dimensional rectangle arrays. Based on our computer simulation, it is shown that the proposed rule set consists of 28-state, 12849 transition rules and has a validity for the synchronization for any rectangle arrays of size m ×n such that 2 ≤ m, n ≤ 500.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control 10, 22–42 (1967)CrossRefGoogle Scholar
  2. 2.
    Beyer, W.T.: Recognition of topological invariants by iterative arrays. Ph.D. Thesis, p. 144. MIT (1969)Google Scholar
  3. 3.
    Gerken, H.-D.: Über Synchronisations - Probleme bei Zellularautomaten. Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, p. 50 (1987)Google Scholar
  4. 4.
    Grasselli, A.: Synchronization of cellular arrays: The firing squad problem in two dimensions. Information and Control 28, 113–124 (1975)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Minsky, M.: Computation: Finite and infinite machines, pp. 28–29. Prentice Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  6. 6.
    Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.) Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading (1964)Google Scholar
  7. 7.
    Moore, F.R., Langdon, G.G.: A generalized firing squad problem. Information and Control 12, 212–220 (1968)CrossRefMATHGoogle Scholar
  8. 8.
    Nguyen, H.B., Hamacher, V.C.: Pattern synchronization in two-dimensional cellular space. Information and Control 26, 12–23 (1974)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Romani, F.: On the fast synchronization of tree connected networks. Information Sciences 12, 229–244 (1977)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Schmid, H.: Synchronisations probleme für zelluläre Automaten mit mehreren Generälen. Diplomarbeit, Universität Karsruhe (2003)Google Scholar
  11. 11.
    Shinahr, I.: Two- and three-dimensional firing squad synchronization problems. Information and Control 24, 163–180 (1974)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Szwerinski, H.: Time-optimum solution of the firing-squad-synchronization-problem for n-dimensional rectangles with the general at an arbitrary position. Theoretical Computer Science 19, 305–320 (1982)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Umeo, H.: A simple design of time-efficient firing squad synchronization algorithms with fault-tolerance. IEICE Trans. on Information and Systems E87-D(3), 733–739 (2004)Google Scholar
  14. 14.
    Umeo, H., Ishida, K., Tachibana, K., Kamikawa, N.: A construction of real-coded transition rule set for Shinahr’s optimum-time synchronization algorithm on two-dimensional cellular arrays. draft, pp. 1–80 (2008)Google Scholar
  15. 15.
    Umeo, H.: Synchronization algorithms for two-dimensional cellular automata. Journal of Cellular Automata 4, 1–20 (2008)MathSciNetGoogle Scholar
  16. 16.
    Umeo, H.: Firing squad synchronization problem in cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 4, pp. 3537–3574. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Umeo, H., Maeda, M., Hisaoka, M., Teraoka, M.: A state-efficient mapping scheme for designing two-dimensional firing squad synchronization algorithms. Fundamenta Informaticae 74(4), 603–623 (2006)MathSciNetMATHGoogle Scholar
  18. 18.
    Umeo, H., Uchino, H.: A new time-optimum synchronization algorithm for rectangle arrays. Fundamenta Informaticae 87(2), 155–164 (2008)MathSciNetMATHGoogle Scholar
  19. 19.
    Waksman, A.: An optimum solution to the firing squad synchronization problem. Information and Control 9, 66–78 (1966)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Tokyo 2010

Authors and Affiliations

  • Hiroshi Umeo
    • 1
  • Kaori Ishida
    • 1
  • Koutarou Tachibana
    • 1
  • Naoki Kamikawa
    • 1
  1. 1.Univ. of Osaka Electro-CommunicationOsakaJapan

Personalised recommendations