Skip to main content

Extending the Geometrical Design of DNA Nanostructures

  • Conference paper
Natural Computing

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 2))

  • 821 Accesses

Abstract

Structural DNA nanotechnology enables us to design and fabricate shapes and patterns at nanoscale as a versatile platform for nanotechnology and bio-related computing. Since the introduction of crossover junctions, an endeavor to create nanostructures by DNA are now flourished as self-assemblies of various 2-D and 3-D shapes. Those achievements mainly owe to two factors: one is the geometry defined by crossover junctions, and the other is the introduction of design approach. The design approach itself is not dependent on any junction structure, however the lack of choice in junctions limits the appearance of resultant nanostructures. We found our interconnected single-duplex DNA junction extends the geometry of DNA nanostructures into a broader class of shapes and patterns. Here we propose an abstraction method that enables us to design variety of structures by those junctions with compatibility. Several demonstrations by this abstraction and possibilities of various new shapes and patterns based on the design approach are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seeman, N.C.: Nucleic acid junctions and lattices. J. Theor. Biol. 99(2), 237–247 (1982)

    Article  Google Scholar 

  2. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13), 3211–3220 (1993)

    Article  Google Scholar 

  3. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  4. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)

    Article  Google Scholar 

  5. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  6. Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)

    Article  Google Scholar 

  7. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)

    Article  Google Scholar 

  8. He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127(35), 12202–12203 (2005)

    Article  Google Scholar 

  9. Hamada, S., Murata, S.: Substrate-assisted assembly of interconnected single duplex DNA nanostructures. Angew. Chem. Int. Ed. 48(37), 6820–6823 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Tokyo

About this paper

Cite this paper

Hamada, S., Murata, S. (2010). Extending the Geometrical Design of DNA Nanostructures. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53868-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53868-4_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53867-7

  • Online ISBN: 978-4-431-53868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics