Skip to main content

Disposition and Dynamics: Interdomain Orientations in Troponin

  • Conference paper
Regulatory Mechanisms of Striated Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

Abstract

When Galvani discovered the electrical regulation of muscle contraction science began an inexorable transformation. Observation of an inorganic trigger for a physiological event presaged the end of vitalism, the beginning of electrochemistry, and over 400 years of research into the first demonstrable biochemical machine: striated muscle. This molecular machine has been studied in various contexts, ranging from holistic (live muscle) to reductionist (purified molecules). Generations of scientists have, collectively, disassembled and reassembled the contractile apparatus of striated muscle, demonstrating an increasingly complete understanding of its function. In the process, high resolution structuresa have been determined for most components of this machine. Given the relative orientation of these proteins in a muscle fiber, visualization of muscle contraction at the atomic level seems attainable. This effort is complicated by the inherent properties of proteins, specifically, proteins with conformationally heterogeneous native ensembles.

Here “structure” or “structural” refers to models of protein tertiary or quaternary structure. “Resolution” originates in the context of scattering methods (optics and diffraction), but is also used to refer to the “spatial precision of coordinates” in the context of structural models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.6. References

  1. S. Ebashi, Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system. Essays Biochem. 10, 1–36 (1974).

    PubMed  CAS  Google Scholar 

  2. J. D. Potter, and J. Gergely, Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13(13), 2697–2703 (1974).

    Article  PubMed  CAS  Google Scholar 

  3. O. Herzberg, and M. N. G. James, Common structural framework of the two Ca2+/Mg2+ binding loops of troponin C and other Ca2+ binding proteins. Biochemistry 24(20), 5298–5302 (1985).

    Article  PubMed  CAS  Google Scholar 

  4. M. Sundaralingam, R. Bergstrom, G. Strasburg, S. T. Rao, P. Roychowdhury, M. Greaser, and B. C. Wang, Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science 227(4689), 945–948 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. S. M. Gagne, S. Tsuda, M. X. Li, L. B. Smillie, and B. D. Sykes, Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat. Struct. Biol. 2(9), 784–789 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. C. M. Slupsky, and B. D. Sykes, NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 34(49), 15953–15964 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. O. Herzberg, J. Moult, and M. N. G. James, A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J. Biol. Chem. 261(6), 2638–2644 (1986).

    PubMed  CAS  Google Scholar 

  8. C. M. Slupsky, The NMR Solution Structure of Calcium-Saturated Skeletal Muscle Troponin C. Ph.D. thesis, University of Alberta, Dept. of Biochemistry (1995).

    Google Scholar 

  9. N. Tjandra, H. Kuboniwa, H. Ren, and A. Bax, Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. Eur. J. Biochem. 230(3), 1014–1024 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. A. C. Murray, and C. M. Kay, Hydrodynamic and optical properties of troponin A. Demonstration of a conformational change upon binding calcium ion. Biochemistry 11(14), 2622–2627 (1972).

    Article  PubMed  CAS  Google Scholar 

  11. D. M. Byers, and C. M. Kay, Hydrodynamic properties of bovine cardiac troponin C. Biochemistry 21(2), 229–233 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. J. Gulati, A. B. Akella, H. Su, E. L. Mehler, and H. Weinstein, Functional role of arginine-11 in the N-terminal helix of skeletal troponin C: combined mutagenesis and molecular dynamics investigation. Biochemistry 34(22), 7348–7355 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. S. M. Gagne, M. X. Li, and B. D. Sykes, Mechanism of direct coupling between binding and induced structural change in regulatory calcium binding proteins. Biochemistry 36(15), 4386–4392 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. N. C. Strynadka, and M. N. G. James, Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 58, 951–998 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. S. K. Sia, M. X. Li, L. Spyracopoulos, S. M. Gagne, W. Liu, J. A. Putkey, and B. D. Sykes, Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J. Biol. Chem. 272(29), 18216–18221 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. S. M. Gagne, M. X. Li, R. T. McKay, and B. D. Sykes, The NMR angle on troponin C. Biochem. Cell Biol. 76(2–3), 302–312 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. B. Tripet, J. E. Van Eyk, and R. S. Hodges, Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J. Mol. Biol. 271(5), 728–750 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. K. Murakami, F. Yumoto, S.-Y. Ohki, T. Yasunaga, M. Tanokura, and T. Wakabayashi, Structural Basis for Ca2+-regulated Muscle Relaxation at Interaction Sites of Troponin with Actin and Tropomyosin. J. Mol. Biol. 352(1), 178–201 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. S. Takeda, A. Yamashita, K. Maeda, and Y. Maeda, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424(6944), 35–41 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. B. D. Sykes, Pulling the calcium trigger. Nat. Struct. Biol. 10(8), 588–589 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. J. R. Pearlstone, and L. B. Smillie, The interaction of rabbit skeletal muscle troponin-T fragments with troponin-I. Can. J. Biochem. Cell Biol. 63(3), 212–218 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. M. V. Vinogradova, D. B. Stone, G. G. Malanina, C. Karatzaferi, R. Cooke, R. A. Mendelson, and R. J. Fletterick, Ca2+-regulated structural changes in troponin. Proc. Natl. Acad. Sci. USA 102(14), 5038–5043 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. B. Halle, Flexibility and packing in proteins. Proc. Natl. Acad. Sci. USA 99(3), 1274–1279 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. D. G. Vassylyev, S. Takeda, S. Wakatsuki, K. Maeda, and Y. Maeda, The crystal structure of troponin C in complex with N-terminal fragment of troponin I. The mechanism of how the inhibitory action of troponin I is released by Ca2+-binding to troponin C. Adv. Exp. Med. Biol. 453, 157–167 (1998).

    PubMed  CAS  Google Scholar 

  25. J. Soman, T. Tao, and G. N. J. Phillips, Conformational variation of calcium-bound troponin C. Proteins 37(4), 510–511 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. M. E. Wall, J. B. Clarage, and G. N. Phillips, Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering. Structure 5(12), 1599–1612 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. T. M. A. Blumenschein, D. B. Stone, R. J. Fletterick, R. A. Mendelson, and B. D. Sykes, Calcium-dependent changes in the flexibility of the regulatory domain of troponin C in the troponin complex. J. Biol. Chem. 280(23), 21924–21932 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. T. M. A. Blumenschein, D. B. Stone, R. J. Fletterick, R. A. Mendelson, and B. D. Sykes, Dynamics of the C-terminal region of TnI in the troponin complex in solution. Biophys. J. 90(7), 2436–2444 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. B. A. Shoemaker, J. J. Portman, and P. G. Wolynes, Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. USA 97(16), 8868–8873 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Hoffman, R.M.B., Sykes, B.D. (2007). Disposition and Dynamics: Interdomain Orientations in Troponin. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_7

Download citation

Publish with us

Policies and ethics